

HITACHI DIGITAL

SIGNAL PROCESSOR(HSP) HD61810

USER'S MANUAL

G HITACHI

AD-E0091

JAN. 1986 AD-ED091

When using this manual, the reader should keep the following in

mind;

1. This manual may, wholly or partially, be subject to change

without notice.

2. All rights reserved: No one is permitted to reproduce or
duplicate, in any form, the whole or part of this manual

without Hitachi's permission.

3. Hitachi will not be responsible for any damage to the user
that may result from accidents or any other reasons during

operation of his unit according to this manual.

4. This manual neither ensures the enforcement of any industrial
properties or other rights, nor sanctions the enforcement

right thereof.

Copyright © Hitachi, Ltd. 1985. All rights reserved.

GENERAL DESCRIPTIONS ...cccccecsasosnnncons FR R Y . 1
1.1 HSP KEY FEATURESccevuene et PN
1.2 APPLICATIONS ..cvicenennnecns ettt N e
ARCHITECTURE +vivvveveesannns et eeeee e et iea e . 7
2.1 PIN FUNCTIONS ovvvvrnneesnneesnnsonnsenss e cevee 9
.2 INTERNAL RESOURCES «evvtenrnonnneeennnuneoananneeess ceeeraanans 14
2.3 MEMORY +.eononnnnn e et e e R
2.3.1 Configuration P 17
2.3.2 Instruction ROMivnieininninenrecnnnsnnreancencnnans 18
2.3.3 Data RAMcoovennn . R O R Lo.. 18
2.3.4 Data ROM .eeeneneninrnrnnonennnnees et L2
2.3.5 General Register (GR) ..vvveveeeecnnnnn e 22
2.3.6 Memory Addressing Mode e eetiieeanees 23
2.3.7 Memory Data Format et e .. 24
2.3.8 Precaution in Using ROM/RAM Memory e 25
2.4 REGISTERS ..uveeveenns R -
2.4.1 Program Counter (PC) ..vuvenveinrinnneanneeennsonnennes 26
2.4.2 Stack Registers (STACKO and STACKL)eevienerennnns 26
2.4.3 Accumulators (ACCA and ACCB)eevivrrnnnnnnrneeennn 27
2.4.4 Condition Code Register (CCR) wuveenrvninnrneenercnenns 29
2.4.5 Control Register (CTR) +venuvvecnneennnaeceeens e . 30
2.4.6 Status Register (STR) .uvevnennrereneanenetennneneannes 31
2.4.7 Repeat Counter (RC) ...evvrvrnnneennnreernnnnnnennens 34
2.4.8 Address Pointers (RAM Pointer A/B, ROM Pointer) 35
2.4.9 Delay Register (DREG) +..veeuveonrnnneessonnecsonnenns 36
T/O INTERFACE +ivvnvvenreenenensnsnseaseteanenoansocsecnocenneneess 39
3.1 T/0 INTERFACE .t vutuuvneonnsessoonenasensossnansnnnansenccsns 41
3.1.1 Parallel I/0 FUNCEIiONS uvvevererensoreenncennnnoansecns 41
3.1.2 Serial I/0 Functionse. et vee.. b4
3.2 INTERRUPT +ovvieverenonnnnsssossonsassssootoaasennssnnnnsnscscs 47
3.3 DMA (DIRECT MEMORY ACCESS) tvevececnrenotenciennnncassceconns 53
3.4 BIT T/0, TXRQ o vvneeennnnneneannensnnnmnenneeaneeeeeeonnmsnns 60

CONTENTS

4.1 DATA FORMAT ceeteceneresteatannan ettt ettt 63

4.2 FIXED POINT ARITHMETIC +ovnrtnnennunene i enenenee o, 65
4.2.1 Fixed Point ALU tuuutiiteennn e nee e, 65

4.2.2 Fixed Point Multiplication ..ueeuieeiuuvnennernennnnnnn.. 67

4.3 FLOATING POINT ARITHMETIC “@vvvvunmneuneeumenesseenonennnn, 71
4.3.1 TFloating Point ALU (FALU) Cereasiieeea 71

4.3.2 Floating Point Multiplieruiveuvenenennnennnnnnn, 77

4.4 DATA TRANSFORMATION .vvvenwnnn. ceeeccttennnaann J P A

5. INSTRUCTIONcovvevnnnennnn N e e rterteieeaa 85
5.1 GENERAL DESCRIPTION &t tutttinunnnnenenseeeneennnnnennnnnn, 87

5.2 INSTRUCTION SET f ettt ittt ceenen C ettt etn e 88
5.2.1 Description of Operandsoceeeeunn.. Cereeienaas 234

5.2.2 HSP Internal Data FLOW wuuvernernneennnnnnnnnnnnnnnnn, 238

5.3 PIPELINE CONTROL vuvvvviinnnnennnn. e teserteeeaneen .. 243

6 PROGRAMMING TECHNIQUE tu'ivivnnnenneenneennnennnennn. C ettt . 247
6.1 BIQUAD FILTER \tttttuttnnttiniee e eiineneeenmeaee e, 249

6.2 TRANSVERSAL FILTER f ettt ettt ettt e 251

7 HSP APPLICATTION & tvuittttettee et eene e enneeeeneenennenan i, 253
8 ELECTRICAL CHARACTERISTICS AND PACKAGE OUTLINE & ovveevrenennnnnnnns 265
8.1 ABSOLUTE MAXIMUM RATING «eveuvevunnsneeees e e naan e, 267

8.2 ELECTRICAL CHARACTERISTICS +''veevvenunnsrnneneennnnnnnnnnns 267

8.3 PACKAGE OUTLINE tttettnnan e tieeetee e ee e mee e, 273

8= 000D I 275
1 HSP REGISTER MODEL &t tvtttinetennneeennnnnneenennnnnnnnis Ceeecesens 277
2 INSTRUCTION CODE L T 279
3 INSTRUCTION SET &t tvttvieretneeeine e eneanenennnennnnnnn, cesrsesns 282
4 ASSEMBLER SYNTAX & tittttttunaneeee e aeeeee e seemme e, 284
5. HSP INSTRUCTION SUMMARY .. vrvereneneeneeensessen e e 287
6 MEMORY MAP . .t ettt ettt e e 288
7 HSP ORDERING SPECIFICATION -« vvvvveunneeeeee e e e eeeeaeeenanen, 289

SECTION 1
GENERAL DESCRIPTIONS

1.1

GENERAL DESCRIPTIONS

HSP KEY FEATURES

A High Performance Signal Processor (HSP) is a single chip processor
with a stored program designed for a high speed digital signal pfocess—
ing. The HSP contains a high speed floating point arithmetic unit and
performs an operation (addition/subtruction/multiplication) with an
instruction in a single cycle of only 250 ns. Moreover, the HSP

employs a CMOS process to realize a low power consumption.

B 3 um CMOS technology
B Arithmetic @® Floating point arithmetic
® Pipeline control
@ Horizontal microinstructions

B Large capacity memories @ 200 x 16-bit data RAM (2-port
accessible)

® 128 x 16-bit data ROM
@® 512 x 22-bit instruction ROM

B System bus compatible with 8/16-bit microcomputer
B DMA operation between the HSP and external memory
B Serial I/0 interface for up to 16 bits
B Operation speed ® Input clock ; 16 MHz
® Internal clock ;4 MHz
® Instruction cycle; 250 ns
@ MULT, ALU 5 250 ns
(throughput with
pipeline control)
M A single power supply of +5V
M Low power dissipation of 250 mW typ.
B Two levels of subroutine and interrupt
B Interrupt by three factors (end of three kinds of data I/0

transfer)

B Package; DIC-40/DIP-40/PLCC-52

HITACHI

3

4

@® What Is The Floating Point Arithmetic ?

The floating point arithmetic expresses a number with a mantissa and an

exponent as follows;
n=a-2b (a; mantissa, b; exponent)

The floating point arithmetic allows a wide range of numbers to be
expressed with less bits, and realizes an easy programming without digit

adjustment.

The HSP provides 16 bits for mantissa and 4 bits for exponent and can

always work in the maximum precision (16 bits).

In the ALU and an accumulator, the mantissa is 16 bits and the exponent
is 4 bits, while in multiplier and memory, the mantissa is 12 bits and
the exponent is 4 bits. These data formats allow the HSP to have the
precision given by the hatches in Fig. 1.1.1 in the floating point
operation. As the exponent is 4 bits, it is fixed to -8 when the data
amplitude is low. Therefore, the effective bit length varies in
proportion to the data amplitude. When the data exceeds 2-8, the
mantissa is normalized and the exponent varies; the effective bit length

is fixed to 16 bits maximum.

As described above, the HSP realizes a 32-bit dynamic range with 16

bits of the mantissa and 4 bits of the exponent.

HITACHI

Resolution

(bit) 32

32-bit floating point arithmetic

28 |

20 F 16-bit floating poigt arithmetic

32-bit fixed point arithmetic

HSP floating point arithmetic

(ALU,accumulator)

N
AN
HSP floating point arithmetic
(MULT, memory)
0 2-24 2720 2‘—16 zllz z‘—B 2‘—4 éo I24 27
Amplitude
Ii . |
® ‘ @ |
Mantissa S exponent
(ex.) ALY @Fﬁ\ololo\o|o|o|o|o|o|o|olo\o|oJ DDoo
7=0.5%x27°
©WOlllOIOIOIOIOIOIOIOlOIOIOMI o] WOMJ
2710 =025 27 (fixed to 278)
Fig. 1.1.1 HSP FLOATING POINT ARITHMETIC

® What Is The Pipeline Control ?

The HSP utilizes a pipeline control to
This operation permits a full overlap

execution as shown in Fig. 1.1.2. The

realize a high-speed operation.
of the instruction prefetch and

results are saved for one

instruction cycle and can be used in the next instruction cycle.

In the HSP, one instruction execution

operation and data write, etc.

permits data read, arithmetic

Instruction T Fﬁfetch Iexecute (arithmetic result)
fetch |execute
Instruction (:) b= ‘1
Instruction (3) f—
Instruction () [
Fig. 1.1.2 PIPELINE CONTROL

HITACHI

The HSP realizes a high throughput with a highly pipelined internal
operation and a horizontal microprogram. Fig. 1.1.3 shows how the

instructions are executed.

Though the result of multiplication is used in the next instruction
cycle, the program with pipeline control permits the simultaneous
operations of the ALU and MULT in appearance, thereby the high-speed
operation is possible.

Inst— Inst-
ruction ruction

— time
execute execute

lcycle ,cycle

iR

Fig. 1.1.3 ONE INSTRUCTION CYCLE

read of the data ROM/RAM

ALU arithmetic operation

a write to the data RAM
multiply (MULT)

® e e

1.2 APPLICATIONS

The HSP (HD61810) is typically used for the following signal processing.

» Digital filter * Modulation/demodulation
* FFT * Waveform generation
* Digital PLL * Correlation

* Windowing

Its applications are described as below.

1. TELECOMMUNICATIONS * High-speed modems

* Data transfer (PB,MF,etc.)

* Echo canceller

* Modulation/demodulation

* Adaptive equalizers

* High-efficiency CODEC etc.
2. SPEECH PROCESSING * Speech synthesis

* Speech analysis

* Speech recognition

* Voice mail

* Filter bank etc.
3. IMAGE PROCESSING * Pattern recognition etc.
4. HIGH-SPEED CONTROL * Servo links etc.

6 HITACHI

SECTION 2
ARCHITECTURE

2. ARCHITECTURE
2.1 PIN FUNCTIONS

Fig. 2.1.1 and Fig. 2.1.2 show the HSP pin assignments.

ves [1 ~ w0 ose
TEST [] 2 39 [] syne
TxAK [] 3 38 [] RES
p1s] 4 371 - NC
b7 [s 36 [] so
e [6 35 [BIT 170
D6 - 7 34 [] TxkQ
D13 [] 8 33 [] sick
DS [32] SOEN
b1z 110 31 [] sock
D4 On 30 [] SIEN
DIt [e 20] si
b3 [13 28 [] DEND
Do [14 27] ¥3
pz []15 26] F2
DY] 16 25] Fl
D1 [(RY 24] ¥0
g []18 23] s
Do [19 22 [] R/W
Vix] 20 21 IE

(top view)
(NOTE) Any line should not be connected to <NC» pins.
Fig. 2.1.1 DIC/DIP PACKAGE PIN ASSIGNMENT

Vs
50

~0
~0 ~¢

-~ :l TxAK
«[] TEST

z
mnr
48

m] NC =
&[] osc
@[] syne
[RES
&[] ~Ne

46 [] BIT 10
45 [1 TxRQ
4[] SICK
43] - NC™
42 [] SOEN
41[] -.NC
40 [] SOCK
39 [J SIEN
38 (] s1
37« NC>
% [] DEND
[F3
4] F2

26 29
I I

Do %

Vee
“Ne -8

SNC-[8

33
=

CS

IE
rRAW [

[«
ko [«

-Ne - [OR
DL [O%
D8 C§

(top view)
(NOTE) Any-line should not be connected to <NC> pins.

Fig. 2.1.2 PLCC PACKAGE PIN ASSIGNMENT

HITACHI ¢

® Pin Functions

(Each pin number corresponds to that of DIP package.)

Signal] Pin [1/0 Functions
Power Supply
Vee 20 5V
Vss 1 ov
Llocks
0sc 40 1 The external clock used to operate the HSP.
Clock rate; 16 MHz
SYNC 39 o] The internal clock of the HSP. Clock rate; 4 MHz
Serial I/0

SICK 33 I Serial input clock. The serial data is input
synchronously with this clock.

SIEN 30 1 Serial input enable. The serial input data is fetched
into the serial input register with high level of
SIEN. After the completion of a fetch, an interrupt
can be generated in the HSP.

S1 29 1 Serial data input. Enters the serial data into the
serial input register on the negative edge of SICK.

SOCK 31 I Serial output clock. The serial data is output
synchronously with this clock.

SOEN 32 1 Serial output enable. The serial output data is
output from the serial output register with high level
of SOEN.

After the completion of output, an interrupt can be
generated in the HSP on the negative edge of SOEN.

50 36 0 Serial data output. Three states. Outputs the serial
data from the serial output register on the positive
edge of SOCK. When SOEN is low, this pin goes to the
high-impedance state.

DMA Operation

TxAK 3 I Transfer acknowledge. DMA data transfer acknowledge
input signal.

TxRQ 34 0 Transfer request, open drain output.

Used mainly in the DMA operation mode. This signal
requests the external device (DMAC) to transfer data.
If TxRQ (DMA transfer request bit) in the control
register (CTR) is set, this pin goes to the high
level, which requests a DMA service. This signal is
automatically cleared with an input of TxAK. Even in
the DMA operation mode, internal data transfer among
the input/output register (IR/OR), an accumulator and
memory is controlled by software.

TxRQ can be used as just an output pin in the non-DMA
operation mode, and the status of TxRQ is altered by
software.

DEND 28 1 DMA operation end signal. When DEND is active low,

a DMA operation is completed.

10 HITACHI

Signal| Pin | I/0 Functions
Data Bus

DO 19 1/0 Three states, bidirectional I/0 ports. The direction

D1 17 of data bus depends on Read/Write (R/W) control

D2 15 signal. When CS (Chip Select) is high, these pins

D3 13 are placed in the high-impedance state.

D4 11 The contents of the CTR and the function control pins

D5 9 (FO to F3) select 8-bit or 16-bit transfer mode.

D6 7

D7 5

D8 18

D9 16

D10 14

D11 12

D12 10

D13 8

D14 6

D15 4 1/0

Parallel I/0 Control

FO 24 I Function control. These signals select an internal

Fl 25 I register for the parallel data I/0. Connected to

F2 26 I address buses of the microcomputer (6800/68000).

F3 27 I

cs 23 I Chip select. The chip select signal enables the
parallel I/0. When CS is active low, DO to D15, FO
to F3, R/W and IE are valid.

R/W 22 I Read /Write signal of the microcomputer. Data is read
from the HSP with high level of this pin, and is
written into the HSP with low level. Valid only
when CS is active low.

IE 21 I Interface enable. Data transfer timing signal on
data bus (DO to D15). The data on the data bus is
transferred to the internal shift register with this
signal. Valid only when CS is active low.

TEST 2 1 Chip test pin (tied to GND).

RES 38 I Reset pin. The low level input of RES clears the
program counter (PC). In the status register (STR),
interrupt mask flag I, is set to disable an inter-
rupt, and the 1/0 data transfer end flags (PF, SIF and
SOF) are cleared. In the control register, DMA and
TxRQ bits for DMA operation are cleared.

When RES goes to high level, the program is executed
from location 1. The instruction of location 0 is not
executed.
(note) To reset, RES should remain low for
more than 1 pus when 0SC is applied.
BIT 1/0| 35 1/0 Open drain output, 1-bit bidirectional I/0 pin.

The status of BIT I1/0 depends on software. Set the
internal flip-flop of BIT I/0 to a one before data
input.

HITACHI

11

e The Handling of HSP Unused Pins

When the HSP operates in the stand-alone mode, pins for control and
parallel I/0 are not used. Moreover, there are some cases when the

sefial I/0 functions and DMA function are not used.
Each unused pin should be handled as follows.

Table 2.1.1 THE HANDLING OF HSP UNUSED PINS

Functions Pins |Pin No.| I/0 Handling of Pins
ST 29 I Tie to Vecc/GND.
Serial Input SIEN 30 I | Tie to GND.
SICK 33 I | Tie to Vcc.
S0 36 0 | Pull up/down by a resistor.
Serial Output SOEN 32 I | Tie to GND.
SOCK 31 I Tie to Vecc.
TxRQ* 34 0 | Pull down by a resistor.
DMA Operation| TxAK 3 I | Tie to GND.
DEND 28 I Tie to Vcc.
cs 23 I | Tie to Vcc.
IE 21 I | Tie to GND.
R/W 22 I | Tie to Vcc.
Bus 1/0 FgWFs | 24-27 I |Tie to GND.
DDy I/0 | Pull up/down by a resistor.
Dg™D; 5 1/0 | Pull up/down by a resistor.
(Note) Even in the byte transfer
mode, Dg'Dy 5 should be pulled
up/down by a resistor.
BITI/0* 35 1/0 | Pull down by a resistor.
Others TEST 2 I Tie to GND. (Not for user)
SYNC 39 0 | Open

(Note 1) * means open drain output. Connect a pull-up resistor to
output data.

(Note 2) The pins tied to Vecc/GND can be connected to resistor.

12 HITACHI

0S
M00S,
NIOS

I
OIS
NAIS

ONAS
0S0

£~
say
ISHL
D¥X],
MVX]
aNaa
SO

Md
a1

0/1 114

DWW O W TN AN ~O
no A AAARAQ

WVIOVIQ MD07Td 0T8T9aH T°C°¢ "314

snq elBp TRUIIIUT
“ O) ¥O0S _A A/
—_—
\@ G WIS wu)
0@ 900V
- 0 VooV [w 1oow |
N 4N
- 5T307 BUTWTI 7 4 1onpoag
— R HOHUCOO
G S v | vamﬁhe\aw%a:oqﬂ
w9y N\
9+ x A
qzZxMZTS
Wod ,
uoT3ionajisul — 90 .wom iﬁ Mw‘m|xﬂ
- B w:m »%
2 i
< [IRERTY
9]
-]
- 3
m
-
- 3 awﬁzswwﬂ
- irmL nod vivd
= O EEEEEEEEEEEEE _
-]
=)
-— 491-M002 9) £uD
3 o) cud
- :m Wvd vivd 9 1499
S -
3]
- 2
3]
- O

13

HITACHI

2.

2

INTERNAL RESOURCES

The HSP contains large‘capacity memories; a data RAM of 200 word X 16
bits, a data ROM of 128 words X 16 bits and an instruction ROM of

512 words x 22 bits, and contains dedicated multiplier and ALU which
permit high-speed, high-accuracy floating point operation. The
instruction ROM stores a comprehensive instruction set, which allows a

wide range of applications.

The block diagram of the HSP is shown in Fig. 2.2.1. Each of the

blocks is described in the following table.

Input /Output Registers

Input Register IR 16-bit register. Data is input to this
register through the external data bus
(DO-D15) .

Output Register OR | l6-bit register. Data is output from this

register to the external data bus (D0O-D15).

Serial Input SIR 16-bit shift register for serial data input.
Register After a serial data is transferred from the
SIR to an accumulator (ACCA or ACCB), the
SIR is cleared.

Serial Output SOR | 16-bit shift register for serial data
Register output. If data has been transferred to
the SOR through the internal data bus, the
data is output to peripherals on a bit
basis.

Control Registers

Condition Code CCR | The CCR contains three flag bits; Carry (C),
Register Negative (N), and Zero (Z). They indicate
the results of ALU operation.

Status Register STR | The STR flags are individually set or
cleared depending on the status of the HSP.
The contents of the STR can be transferred
to an accumulator.

Control Register CTR | The CTR is used to select the desired
operating modes for the HSP. The CIR
contents are determined by either the HSP
instructions or the MPU.

14 HITACHI

Instruction Controllers

Instruction ROM

A 512 word by 22 bit ROM. The instruction
ROM stores instructions for the HSP.

22-bit instruction is transferred to the
instruction register in parallel in a single
instruction cycle.

Program Counter PC The PC is a 9-bit address counter that is
used to address the Instruction ROM. The
PC generates the instruction ROM addresses O
through 511.

Stack Registers STACKO | The stack registers are 9-bit registers that

STACK1 | are used to save the PC contents. The
contents of the PC is pushed onto these
registers when a subroutine jump or an
interrupt occurs.

Repeat Counter RC 6-bit down counter. The RC is used for
repeated execution of an instruction and for
the control of loops.

Instruction Inst. | 22-bit buffer register. This register

Register Reg. temporarily stores the Instruction
transferred from the instruction ROM.

Internal Memory Controllers

Data RAM A 200 word by 16 bit RAM.

Data ROM A 128 word by 16 bit ROM.

RAM Pointer A
RAM Pointer B

ROM Pointer

X and Y page

Address Pointers

General Registers

RB

RO

X/Y-

Page

GRO-3

These are 6-bit address pointers which are
used to generate the data RAM address,
combining with the contents of page
address.

This is a 6-bit address pointer which is
used to generate the data ROM address,
combining with the contents of page
address.

These are 3-bit buffer registers for a page
address. The effective address for the data
RAM or the data ROM consists of this

address and the contents of the RAM/ROM
pointer.

16-bit general purpose registers. The GRs
can be used as working registers. Data is
transferred to or from the GRs through the

Y-Bus.

HITACHI

15

Internal Memory Controllers

Delay Register

DREG

16-bit register. The DREG holds the data
to be transferred through the Y-but for a
single instruction cycle period.

Arithmetic Elements

Accumulator A
Accumulator B

Arithmetic Logic
Unit

Multiplier

Multiplier

Input X-Register

Multiplier
Input Y-Register

Multiplier
Output Register

ACCA
ACCB

ALU

MULT

X-Reg.

Y-Reg.

MOUT

20-bit accumulators. The accumulators
store the output from the ALU. Either the
ACCA or ACCB is selected in response to the
instructions.

The ALU performs arithmetic and logical
operations. Either the fixed point oper-
ation or the floating point operation is
selected depending on the instructions.

The MULT performs a multiply operation.
Either the fixed point operation or the
floating point operation is selected
depending on the instructions.

16-bit register. The X-Reg. holds the data
transferred from the X-bus or the internal
data bus during a multiply operation.

16-bit register. The Y-Reg. holds the data
transferred from the Y-bus or the internal
data bus during a multiply operation.

This is a 20-bit buffer register which holds
the output from the MULT for a single
instruction cycle period. This register
consists of a mantissa (16 bits) and an
exponent (4 bits).

16 HITACHI

2.3 MEMORY

2.

3.

1 Configuration

The HSP'has the following three data memories as shown in Fig. 2.3.1.

o Data RAM

o Data ROM (for coefficient)

o General Registers

200 W X 16b
128 W x 16b
4 W x 16b

The words data can be transferred from these memories to the multiplier

(FMULT) and ALU (FALU) in parallel through two buses; X- and Y-Bus.

A data bus is also provided and the data is written into the data RAM

or GR through this bus.

Program memory is a 512 W x 22b on-chip ROM and stores instructions.

_GR 0]
[GR 1
GR 2
GR ?

200Wx16b
data RAM

128Wx16b
data ROM

|

@ Y - Bus 16

Fig.

2.3.1 DATA MEMORY CONFIGURATION

16
16

w) data bus
=> X/Y-Bus

HITACHlI

17

2.3.2 Instruction ROM

The instruction ROM consists of up to 512 words of 22-bit width.

A 22-bit instruction is read out to the instruction register during
each instruction cycle. The program starts from location $0, but the
execution of the program starts from location $1. When jumping to
location $0 during instruction execution, the program starts from

location $0 and the instruction of location $0 is also executed.

Location $1FF (the last address) is a vector address for interrupt.
Thus, store jump instruction here for jump to an interrupt service
routine. Locations $1E7 through $1FE are reserved for LSI testing

purposes, so they should not be used for the user's program.

22 bits
0 0
%1 1 3 reset start address

users program area

$1E6 486

$1E7 487
unusable

$1FE 510

$1FF 511 <— interrupt vector

(jump address when an interrupt occurs)

Fig. 2.3.2 INSTRUCTION ROM MEMORY MAP

2.3.3 Data RAM

Data RAM consists of up to 200 words of 16-bit width and is divided
into four pages (page address; O through 3). Each page consists of

50 words.

18 HITACHI

The data in the data RAM can be accessed through two ports. Two data
of the different pages (X-page and Y-page) can be read in parallel if

the pointer addressing mode is employed.

In the pointer addressing mode, 6 bits of the RAM pointer and 3-bit
page address (X-/Y-page address) in the instruction code can be used
as' the data memory address. When accessing two data, the pointer
addresses should be identical. (RAM pointer A and RAM pointer B cannot
be used at the same time.) Fig. 2.3.4 illustrates data RAM memory

access in the pointer addressing mode.

The page address specified in the X-page part of an instruction code

is the X-Bus and that specified in the Y-page part to the Y-Bus a write
operation is performed through the data bus to the data RAM address
consisted of RAM pointer address and Y-page address. The contents of

an accumulator or the DREG are written to the data RAM.

address
——
page pointerdata RAM
(3% (6" (16"
ol F E
1 o |
2l |]
{{_g
o
19| —
P T~ !
o T~ 1
of T E 1
I8 T T
ol F]
3| b]
.
49| | —
| |
b T~
o] F —
1 n -
2l B -
il F]
2|
9] -~
|
!
ol b 4
1 - —]
> L]
31 0
3|
9| F -
| 1
o T~ !

Fig. 2.3.3 DATA RAM MEMORY MAP

HITACHI

In the direct addressing mode, both the pointer address and the page
address are contained in the instruction code. 1In this case, the data

is output to Y-Bus.

See Section 2.4.8 for details of address pointers.

Page address

0 1 2 3
0
3 1
o
o 2
T3
= 4
'g }3 T T
bt = NI I
[‘8 | I
_ -V | : =
[T
47 ! |
_— T i
48 : |
- 49 ! [
T | |
= i [|
El I
Fo in = = ml
- |
= X - Page [O Xoseleetor L ’ ’
l
! { '
0 1 2 31
Y - Page E:> Y —Selector]
[P S LA L ——
X —Bus

Y — Bus @

Fig. 2.3.4 MEMORY ACCESS OF DATA RAM
(POINTER ADDRESSING MODE)

20 HITACHI

2.3.4 Data ROM

Data ROM consists of up to 128 words of 16-bit width and is divided
into four pages (page address; 4 through 7). Each page consists of

32 words. If the pointer addressing mode is employed, 6 bits of the
ROM pointer and 3-bit page address (X-/Y-page address) in the instruc-

tion code are used to make an effective address.

The data RAM has two ports for output, while the data ROM has only one
port. However, as shown in Fig. 2.3.6, one data can be output to both
X-Bus and Y-Bus. Thus, two-data output from the data ROM does not

allow the difference between the X- and Y-page addresses.

In the direct addressing mode, both the pointer address and the page
address are contained in the instruction code. 1In this case, the data

is output to Y-Bus.

When reading the data ROM and the data RAM at the same time, two data
can be read from the different pointer addresses, because each data

memory has its own pointer address.

address
N
page pointer data ROM
(3b) (6b) (16 b)
0 - —
1 -]
P [a
%; - —
4 311 b -
1
| |
| |
ol F —
1 L]
5 I]
3| .
5 31 - =
[|
' | . !
| | |
‘ _
0 - -
1 []
2 -]
3 — B
6 - —
\ | [
| ~ |
| S|
0 o - —
1 | i
2 - ﬁ
3 I _
7 31| | =
I I
o !
1 \\\\J
| SRS

Fig. 2.3.5 DATA ROM MEMORY MAP

HITACHI 21

Page address
4 5 6 7

Decoder
Pointer address
w
.
| i
-

30
31

ROM Pointer

p— S
Lo [T

I
|
X—Page :'\> L

t

|

T

| T Qelee
Y*Page@ v __/71 Y — Selector

X—Bus

Y —Bus A,

Fig. 2.3.6 MEMORY ACCESS OF DATA ROM (POINTER ADDRESSING MODE)

2.3.5 General Register (GR)

The HSP has four 16-bit general registers (GRO to 3) which are used as

working registers.

-If the pointer addressing mode is employed, the GR and data ROM/RAM can

be accessed at the same time.

The address of the GR it specified in the Y-page address part in the

instruction code. The data in the GR is input /output through the Y-Bus.

16 bits

GRO
GR1
GR2
GR3

Fig. 2.3.7 GENERAL REGISTERS

22 HITACHI

2.3.6 Memory Addressing Mode

There are two modes of data memory addressing; pointer addressing and

direct addressing.

(D)

(2)

Pointer addressing mode

Pointer addressing uses the page address (0 through 7 page) and
the pointer address as the data memory address. Page address is
contained in the instruction code, and the pointer address is

determined by each address pointer (RA/RB/RO).

In this mode, the X-Bus output and Y-Bus output are as follows;

o The data RAM and data ROM are accessed.
X-Bus Y-Bus
.
ROM ROM

o The data RAM/ROM and GR are accessed.

X~-Bus Y-Bus
RAM

> GR <
ROM

The pointer addressing mode is available for accessing two-word
data during the product sum operation, reading data from sequential

addresses, etc.

Direct addressing mode

In direct addressing, nine bits of the instruction code

specify data RAM/ROM address (page address and pointer address).
The direct addressing mode is available for multiplying one-word
data in the data ROM/RAM by data in an accumulator, or reading

data from discrete addresses.

HITACHI

23

Instruction code (22 bit) 4‘1

o @ T o @ RAM/ROM select
@ RA/RB select

RA/RB/RO

R
pointer pointer

RA : RAM pointer A
L RB : RAM pointer B
Memory address-—+ [page|pointer4] lpage!pointer RO : ROM pointer

-

;

Two port output X-Bus' Address Y-Bus Address

Pointer part is specified by ROM/RAM pointer indirectly.

(a) Pointer addressing mode

[47 Instruction code (22 bit) 441

<L <5

Memory address |page pointer
- -
Y-Bus Address
Memory address is specified directly.

(b) Direct addressing mode

Fig. 2.3.8 MEMORY ADDRESSING MODE

™o

3.7 Memory Data Format
Fig. 2.3.9 details data formats in the data ROM/RAM and GR.

Note that in floating point data form the twelve leftmost bits of the

16-bit mantissa are transferred from an accumulator to the data memory.

24 HITACHI

fixed point

floating point

ALU 15

03 0

output [

(expo-
nent)

(ACC)

J

unused

1

|

|

i

|

|
memory 115
(data bus)) I

I

15 43 03 0
[(mantissa) I (expos
\ \ | H
\

\ \ ! :
\ \ : [

\
\ N |
15 43 o

I (mantissa) | (Xro]

nent)

2.3.8 Precaution

Fig. 2.3.9 DATA FORMAT

in Using the Data ROM/RAM

(1) The data RAM (and registers, if necessary) should be cleared by

software after power on to prevent the oscillation of the digital

filter, etc.

The data RAM cannot be cleared at resget.

(2) Location 31 (in page 7) of the data ROM is reserved by the HSP

emulator system for program development.

Special attention is

needed not to use this location when using the emulator system.

HITACHI 25

2.4 REGISTERS
2.4.1 Program Counter (PC)

The PC is a 9-bit register which contains the address of the next
instruction to be executed. The PC can generate the instruction ROM

addresses in the range from O through 511.

The MPU can set the instruction ROM addresses O through 255 in the PC
through the external data bus. In this case, however, the instruction

execution starts from the next address to the specified one.

2.4.2 Stack Registers (STACKO and STACK1)

The STACKO and the STACK1l are 9-bit registers. The contents of the PC
are pushed onto the stack registers when a subroutine jump or an

interrupt occurs.

The HSP provides two stack registers, allowing two nesting levels.

i
stacko [[T TT T T T
i

stack | [T[] []]]

9 bits x 2

Fig. 2.4.1 ARRANGEMENT OF THE STACK REGISTERS

26 HITACHI

2.4.3 Accumulators (ACCA and ACCB)

The HSP has two 20-bit accumulators (ACCA and ACCB). Either of the
accumulators is selected by the accumulator select bit in the instruc-—

tion code.

The accumulators store the output from the ALU. Fig. 2.4.2 and Fig.
2.4.3 show the input/output of the accumulators for the fixed point
operation and the floating point operation respectively. When a float-
ing point data is transferred from an accumulator to the data RAM or

the GRs, the lower four bits of the mantissa is truncated.

Since a floating point data consists of 20 bits, it occupies two words
of the data RAM or two GRs. A transfer of a floating point data
between an accumulator and the data RAM (or the GRs) is performed in

the following procedures.
o To save the contents of an accumulator in the data RAM or the GRs,

(1) transfer a mantissa (16 bits) of the floating point data from the

accumulator to a data RAM (or GR) address C) in the fixed

point representation.

(2) then transfer the same data into the next data RAM (or

the next GR) address @ in the floating point representation.

o To transfer the contents of the data RAM or the GRs to an accumulator,

(1) Transfer the contents of the data RAM (or GR) address (:) to the

accumulator.

(2) Converts the contents of the accumulator to a floating point

data using the contents of the data RAM (or GR) address @ as

a scaling constant.

HITACHI 27

RAM, GR

16 bits T
16 bits
\/ T
/
ALU eXpo
mantissa ;nent
/
L
16 bits 4 bits
(unused)
15 { 035/ 0
ACC A/B I(un-
mantissa used)
LSB
MSB 16 bits 5
16 bits J
))

data bus (Dg-15)

Fig. 2.4.2 INPUT/OUTPUT OF THE ACCUMULATORS FOR THE
FIXED POINT ARITHMETIC OPERATION
RAM, GR
TN
f
12
20 J M
Di-1s 4
' ¢ ILDo s
V T
/
FALU expo-
mantissa ,nent
/
T “
15 43 03 0
T T
ACC A/B | lexpo—
mantissa | nent
12 4
data bus (Dg-15)
Fig. 2.4.3 INPUT/OUTPUT OF THE ACCUMULATORS FOR THE

FLOATING POINT ARITHMETIC OPERATION

28 HITACH!I

2.4.4 Condition Code Register (CCR)

CCR

The CCR contains three flag bits; Carry (C), Negative (N) and Zero (Z).

They indicate results of the ALU operation.

The CCR is connected to the D13 to D15 bits of the internal data bus,
which allows the transfer of data between the CCR and the accumulators

in response to the instructions.

15 14 13 12 11 _10__9_ _s_ 7 6_ 5 _4_ 3 _2_1__0_
S A /EMA/ WMM/E
Flag Set /Reset Condition
Zero Flag Clear ('0') if the mantissa of the

output from the ALU # 0

Set ('l1') if the mantissa of the
output from the ALU = 0

Negative Clear ('0') if the mantissa of the
Flag output from the ALU 2 O

Set ('l') if the mantissa of the
output from the ALU < 0
(~ N = sign bit)

Carry Flag | Clear ('0') if a carry is not generated
during the ALU operation.

Set ('l') if a carry is generated
during the ALU operation.

o All of the CCR bits are affected by the fixed point operation.
o Z and N are affected by the floating point operation.

For details of the C flag bit, see 5.2 'INSTRUCTION SET'.

Fig. 2.4.4 CCR SET/RESET CONDITION

HITACHI 29

2.4.5 Control Register (CTR)

The CTR can be used to determine the desired operating mode for the

HSP.
CTR.
™o -

Dedicated instructions transfer data from the accumulator to the

The MPU can also input data to the CTR through parallel I/0 pins

D15). During reset, the DMA bit and the TxRQ bit are cleared

but the others are undefined.

The CTR is connected to the DO to D7 of the internal data bus.

15

14 13 12 11

10 9 8 7 6 5 4 3 2 1 0

CTR

Bit | Tx

“|1/0 | g | % | |ovER| DrA

W/B

3

Table 2.4.1 FUNCTIONS OF THE CTR

Bit | Name

Function

Descriptions

0 DMA

Parallel 1/0
Data Transfer
Mode Select bit

e Selection of the mode for data transfer
through the parallel I/0 ports.
1: DMA operation mode
0: Non-DMA operation mode

This bit must be cleared during a usual data
transfer. Even in the DMA operation mode, the
transfer of data through the parallel I/0
ports must be accomplished by the HSP
instructions.

1 OVFP

Overflow
Protection bit

® Protection against overflows.

If an overflow occurs during an ALU operation,
the result is fixed to the maximum value.

1: Performing a protection against overflow.
0: Not performing a protection against
overflow.

TxRQ

£~

DMA Operation
Request bit

e Request for DMA operation.

This bit is set to request a DMA transfer in
the DMA operation mode.

The TxAK input clears this bit and then it is
set automatically. However, after the DEND
input, this bit remains clear. In the non-DMA
operation mode, the TxRQ can be used as a
programmable output.

5 | BIT
1/0

Bit I/0 bit

e Input and output of the BIT I/0 pin.

This bit controls the input/output of the BIT
1/0 pin. When using the BIT I/0 pin as an
output, the user must write data directly to
this register. When using the bit as an
input, he must write a 1 and then data in this
register.

30 HITACHI

Bit

Name Function Descriptions

W/B Word /Byte bit o Selection of the size of the data transfer-
red through parallel I/0 ports.

1: Word (16-bit) data is used.
0: Byte (8-bit) data is used.

2.4,

* Os must be written in the unused bits of the CTR, but ls are read

from these bits.

6 Status Register (SIR)

The STR indicates the current HSP information and controls the HSP

operation.

The contents of this register are transferred to the accumulator by the

TFR instructions (TFRASTR,A and TFRASTR,B). After the transfer of data
from the STR to the accumulator, the SOF, SIF and PF bits are cleared.

In addition, the contents of the accumulator can be transferred into
the UF, Igy, Igp, Ip and Iy bits by the instructions (TFRAA, STR and

TFRAB, STR).

The STR is connected to the low-order byte of the internal data bus
(DO-D7) . During reset, the Iy bit is set, the PF, SIF and SOF arc

cleared and the other bits are undefined.

HITACHI

31

15 14

13 12 11 10

STR

UF | Igo| Igy| Ip | IM |SOF |SIF | PF

Table 2.4.2

FUNCTIONS OF THE STR

Bit | Name

Function

Descriptions

Parallel 1/0
data transfer
end flag

The PF bit is a read-only bit which is set by
the CS input during data transfer through the
DO-D15. If the data transfer is performed

on a byte basis, the PF bit is set by the CS
input during the transfer of the high-order
byte. If interrupts are enabled, an inter-

rupt occurs when this bit is set. The PF

bit can be set even when interrupts are disabled.
The data transfer from the STR to the accumu-
lators clears the PF.

Serial input
data transfer
end flag

The SIF bit is a read-only bit which is set
to indicate that a serial input has been
completed. If interrupts are enabled,

an interrupt occurs when this bit is set.
This bit can be set even when interrupts
are disabled. The data transfer from the
STR to the accumulator clears the SIF.

2 SOF

Serial output
data transfer
end flag

The SOF is a read-only bit which is set to
indicate that a serial output has been
completed. If interrupts are enabled,

an interrupt occurs when this bit is set.
This bit can be set even when interrupts
are disabled. The data transfer from the
STR to the accumulator clears the SOF bit.

32 HITACHI

Table 2.4.2 FUNCTIONS OF THE STR (cont'd)
Bit | Name Function Descriptions

3 Iy Interrupt mask When an interrupt occurs, the Iy bit is

bit automatically set to prevent additional
interrupts. The Iy bit is cleared by the RTI
instruction. This bit is also set or cleared
in response to the data transfer instructions
of TFRAA,STR and TFRAB, STR.

4 Ip | Parallel I/0 The Ip bit is set to disable interrupts
interrupt mask occuring after the completion of a data
bit transfer through the parallel I/0 ports. The Ip

bit is also set or cleared in response to the
data transfer instructions of TFRAA,STR and
TFRAB,STR.

5 Igt Serial input The Igy bit is set to disable interrupts
interrupt mask occuring after the completion of serial input.
bit This bit is set or cleared in response to the

data transfer instructions of TFRAA,STR and
TFRAB, STR.

6 Igo | Serial output The Igp bit is set to disable interrupts
interrupt mask occuring after the completion of serial output.
bit This bit is set or cleared in response to the

data transfer instructions of TFRAA,STR and
TFRAB,STR.
7 UF User's bit The UF bit is an optional bit. This bit is

set or cleared in response to

the data

transfer instructions of TFRAA,STR and

TFRAB,STR.

HITACHI 33

2.4.7 Repeat Counter (RC)

The RC can be used for the repeated execution of the same program step
in response to the repeat instructions or for the execution of loops
in response to the jump instructions. This counter reduces the number
of the program steps for repeated product/sum operations, which leads

data processing time to be reduced.

The RC consists of six bits connected to D10 through D15 of the

internal data bus. The user can set a value of O to 63 in the RC.

15 14 13 12 11 10

MSB LSB
Fig. 2.4.5 REPEAT COUNTER

The following programs contain the repeated operations using the RC.

Example (1) Repeated operation by the repeat instructions
Step 1 (RC) « fin (n = the number of repetition)
Step 2 Repeat instruction (The RC may be decremented)
Step 3 Arithmetic instruction (RC) <+ (RC-1)
The arithmetic instruction is repeated until the RC
content becomes 0. Therefore, the number of the

repetition of the arithmetic operation is n+l.
Repeat instruction ; FRPTA, FRPTB, RPTA, RPTB

Example (2) Repeated operation by the jump instructions
Step 1 (RC) < in
Step 2 Instruction 1
Step 3 Instruction 2
Step 4 If RC % 0, jump to Step 2 decrementing the RC
content.
Step 5 ...
The execution of instructions 1 and 2 will be repeated
until the RC becomes 0, and then the execution of Step 5

will start.

The RC may be autodecremented when any of the RAM/ROM pointers is
incremented by the pointer addressing mode instructions. The RC can

also be decremented by the decrement instructions.

For details, see the descriptions of the HSP instructions.

34 HITACHI

2.4.8 Address Pointers (RAM pointer A/B, ROM pointer)

The HSP provides three 6-bit address pointers: RAM pointer A, RAM

pointer B and ROM pointer.

The contents of an address pointer (that is, pointer address) is

combined with the contents of the page address part in the instruction

code (either X page or Y page) to generate an effective address.

Fig. 2.4.6 shows the address pointers. Each of the address pointers is

connected to the D10-D15 of the internal data bus.

Fig. 2.4.7 shows how to generate an effective address of the data RAM
or the data ROM using the address pointers.

By using two page addresses (X page and Y page) and a pointer addreés,
two data located in different pages of the data RAM can be read at the
same time. A write operation is performed to the data RAM address
which is generated by the contents of a RAM pointer and a Y page

address.

Since two different data cannot be read from the data ROM at the same

time, the same data are output onto the X-Bus and Y-Bus.

The HSP instructions select either the RAM pointer A or the RAM pointer
B. The address pointers may be autodecremented after the instruction

execution is completed.

Using two RAM pointers brings the efficient programmed complex number

arithmetic such as FFT.

15 14 13 12 11 10
. I [| I I
RAM pointer A
15 14 13 12 11 10
. | I I | [
RAM pointer B
15 14 13 12 11 10
. [| I |
ROM pointer

(Note) The highest bit of the ROM pointer must be 0.
Fig. 2.4.6 ADDRESS POINTERS

HITACHI

35

X-Bus X-page =

T T T T T T T T T 0~ 3 T T T T T
L Ax ’ Ap1/Ap» l <: I Ax Ap: j
N X-page = 3
effective address X-page 4 7 RAM Pointer A/B
App = 0 v 49
Y-page =
Y-B
-, —_— — 0 3 —
I Ay Ap1/Ap;]<:i:] [Ay Ap, 44]
effective address Y-page Y_ngi ; ROM Pointer

Apy = 0~ 31

o Either the RAM pointer or the ROM pointer is selected by
page address.

o Either the RAM pointer A or the RAM pointer B can be used.

o If both of the effective addresses are generated with
the contents of the ROM pointer, the contents of X-page
must be the same as these of Y-page.

Fig. 2.4.7 GENERATION OF EFFECTIVE ADDRESS USING ADDRESS POINTERS

2.4.9 - Delay Register (DREG)

The arithmetic operation for signal processing is performed using the
delay function, such as the transveral filter shown in Fig. 2.4.9.
This function delays a string of input data for a sampling period on
every sampling. (The delay is represented by Z_l).

The HSP provides the DREG connected to the output of the data RAM as
shown in Fig. 2.4.10.

The DREG provides a two-stage latch circuit. This register holds the
data read from the data RAM for a single instruction cycle, and then
the data is written into the next data RAM address after reading the

data of the address.

By repeating this sequence, the DREG shifts data of the data RAM to the

next address.

36 HITACHI

The data transfer from the DREG to the data RAM is controlled by the

instruction code. The format of the data transfer is described as

below.

- Fixed point data

15

DREG —— 1

@ 115 0!

data RAM,GR rf* T ' T T |

+ Floating point data

15 43 0

DREG rﬁT T T"nmantissa |e§pdne§EJ
: : i

{} ﬁs 413 0.

data RAM,GR I T mantissa iekpdnehtl

Fig. 2.4.3 THE DATA TRANSFER FROM THE DREG TO THE DATA RAM

The data transfer between the DREG and the GR can also be performed.

INPUT n Wi -1 Wi Wy Nt
/AR e R - z '

|
=0 O O =0
]

\
| ! \\\\ngPUT
L ! 7

N
Qpn=23 C;{XWy- 1 , Wi=»W,

Fig. 2.4.9 TRANSVERSAL FILTER

HITACHI 37

Data RAM/GR

X — Bus

Y — Bus l

Fig. 2.4.10 THE POSITION OF THE DREG

Instruction cycle time ® : Read of Data
RAM/ROM/GR
Ao W,
PO ® ®OO PO® ® : ALU operation R W
| @ : Write to data l :
L o T ©° RAM/GR A W
® : Delay As W,
Read
@? @ g’} @@ : Data of Data RAM
W, W
: X W, X D-Reg. consists of
— . 2 stages of latch @
A W, X & :
! i
® ® A, W,
Write A W,
Ao A, X A, X RAM address Al w
A; W,
(a) Timing Diagram of
Read and Write to
the Data RAM (b) Data Shift in the
Data RAM

Fig. 2.4.11 THE DATA SHIFT IN THE DATA RAM
USING THE DREG

38 HITACHI

SECTION 3
1/0 INTERFACE

.1

.1

I/0 INTERFACE

1/0 INTERFACE

The HSP has parallel and serial I/0 functions. The parallel I/0 pins
can be directly connected with the data buses of the 8-bit micro-

computer HMCS6800.

.1 Parallel I/O Functions

The HSP provides bidirectional data buses (DO through D15) for parallel
1/0 function. The parallel data is transferred between the HSP and the

external device through parallel I/0 ports (DO through D15) as follows.

(1) Word (16-bit) data transfer (DO-D15 <> IR, OR)

16-bit data transfer between the parallel I/0 lines (DO through D15)

and the 16-bit input register (IR) or the 16-bit output register (OR).

(2) Byte (8-bit) data transfer (DO-D7 <> IR, OR)

8-bit data transfer between the parallel I/0 lines (DO through D7)
and the IR or OR. A word data in the IR/OR is divided into two
bytes for transfer; the high-order byte (bit 8 through bit 15) and
the low-order byte (bit O through bit 7).

First, data in the low-order byte is sent, and then the high-order
byte is sent. Note that this is a reverse of the order in the

microcomputer.

(3) CTR/PC data transfer (DO-D15 - CIR, PC)

The contents of the CTR/PC can be changed externally.

In this case, a written data is transferred from the MPU through
the parallel I/0 pins DO - D15. This function can be used to
restart the HSP program from the optional address (address 1 - 256)
during instruction execution. The start address is (PC) + 1. 1In
this case, the 1/0 ports (DO - D15) are directly connected to the
internal data bus (DO - D15) without through the IR or OR. During
a transfer operation, the HSP is placed in the halt state because
the internal data bus is totally dedicated. The data is set in

response to the negative edge of IE.

HITACHI 41

HSP
Buffer
|r““"——————1_§7}5 %I F The selector determines
0 ~7 > the size of transferred
Selector data (word/byte)
IR
— L~
— — 8~15[
WL_JL_;A‘__J IR ~
1 0~7 1
Parallel I/0
Pins i
.8 OR J
Dg_15 ‘i‘ ——— G
Selector|| 8~151" ‘
I 1
. |
8 ~ Jor |
Doz /j:*—“j o7 [+ i
Dﬂ-—‘ls L)(l 7

Fig. 3.1.1 PARALLEL I/0 DATA TRANSFER

42 HITACHI

Parallel I/0 data transfer is controlled with the CS, IE, R/W, FO-F3.
The function depends on the contents of function control pins FO-F3.

The function control pins FO-F3 can be used only if the CS is active.

Table 3.1.1 PARALLEL I/0 FUNCTIONS

Control

HSP
Operations

Chip Function

o .
Select Control perations

Interrupt

CS F3 F2 F1 FO

1 * % % % |No I/0 operation Active -

0 0 0 O O |No I/O operation Active -

0 O 1 O |Data transfer (CTR(W/B)=0) Active No

® low order byte interrupt
Read : DO-7 <« ORO-7
Write: DO-7 - IRO-7

0 O 1 1 |Data transfer Active Interrupt

(1) Byte transfer mode occurs

(CTR(W/B)=0)

@® high order byte
Read : D0O-7 < OR8-15
Write: DO-7 - IR8-15

(2) Word transfer mode
(CTR(W/B)=1)
@® word (16 bits)
Read : DO-15 <« ORO-15
Write: DO-15 - IRO-15

0 1 0O O |CIR data transfer Halt No
Write: DO-7 - CTRO-7 interrupt

1 0 0 O |PC data transfer Halt No
Write: DO-7 - PCO-7 interrupt

® The value of PC should be in
the range of O through 255.
(D10=1, D9=0, D8=0)

® The interrupt mask bit Iy
(CTR) is set.
The contents of other
registers may be changed.
The contents of the data
_RaM remain unchanged.

(Note) Other contents of FO-F3 than the above are inhibited when the
the CS is 0.
The start address is (PC) + 1 after the transfer of PC data.

HITACHI 43

3.

When writing data into the CTR or PC, the FO - F3 and CS input aborts
the internal clock and the current instruction execution is stopped;

the HSP is placed in the halt state.

The CS goes to high after the end of CTR/PC data transfer, which makes
the HSP leave the halt state and resume the program execution. Special
attention is needed not to place the HSP in the halt state for more than

10 us because of the HSP dynamic operation.
Input to control pins
Fo~ Fy X CTR/PC Data Transfer __ X
s \ [Halt detect / Release from Halt state

1B M
!

Completion of Data Transfer

HSP Operation

Internal Clock 40 _| [
Instruction Y S —

Execution Halt (Internal
Active | Operations Stop) | Restart

[(10 s max)

Fig. 3.1.2 HALT OPERATION DURING CTR/PC DATA TRANSFER

1.2 Serial I/0 Functions

Serial 1/0 mainly interfaces the HSP to A/D and D/A converters. The HSP
permits up to 1l6-bit serial I/0. Table 3.1.2 gives a general description

of serial I/0.
(1) Serial input

The HSP provides the SICK, SIEN and SI pins for serial inputs.
Fig. 3.1.3 is a timing diagram of the serial input. SI is a
serial data input pin and SICK is a serial input clock. Data is
input to the serial input register (16 bits) from the Most
Significant Bit (MSB). If the input data is less than 16 bits, it
is shifted automatically with an internal counter so that the MSB
of the data goes to the MSB of the SIR. In this case, the serial
data shifts synchronously with SICK. Thus the shift operation
needs at least 16 clocks of SICK. Usually, a continuous clock

signals must be input to the SICK pin.

The rising of SIEN permits the serial input. Once SIEN is enabled,
the serial data is completely input independently of the falling
of SIEN.

44 HITACH!

No data transfer to an accumulator is allowed during the serial
input. The SIR is cleared when data is transferred to the

accumulator.

interrupt
SICK

SIEN l

st ¢ Y 1Y 2Y 3X4X5K6X7X8X0Xtofi1yi2Xi3) 14y 16X16X —

The input data are always 16 bits

Fig. 3.1.3 SERIAL INPUT TIMING

(2) Serial output

The HSP provides the SOCK, SOEN and SO pins for serial output.
The basic timing of the serial output is the same as the serial
input timing. SO is a serial data output pin and SOCK is a clock

pin for serial output.

Usually, a continuous clock must be input to SOCK. The rising of
SOEN enables the serial output. The serial data starts to be
output at the rising edge of SOCK. When sock goes to high, data
stops to be output and SO goes to the high impedance state. Thus
note that the transition to the high impedance state (Hi-Z) is not
synchronized with a falling edge of the SOEN. The SOR is cleared

after the completion of the serial data output.

f-interrupt

SOEN I L__—

WZ Y Y3X4aYs X6 X7 XsYo Yoy myeyisyay s iey—t-2—

2]
o

Fig. 3.1.4 SERIAL OUTPUT TIMING

e daininlinfingigigligigisipiginisinininininininl

SOEN | t

Hi-Z

so HZ Y Y Y aXs XeX7XsXoYoyiifiz)

Fig. 3.1.5 SERIAL OUTPUT TIMING (WHEN DATA IS LESS THAN 16 BITS)

HITACHI 45

Table 3.1.2 SERIAL INPUT/OUTPUT

Serial Input Serial Output

Block X

Diagram 16 bit Internal Data Bus 16 bit Internal Data Bus

. g s
Input Shift Reg |« 0 SI Output Shift Reg SOCK
(SIR) 16 bits SICK (SOR) 16 bits jgﬁ
Enable to Interrupt SOEN
Bit Counter Carry, ontrol Block
4bits lcircuit SIEN
Clock
to Interrupt Block) i
The SO pin goes to high
impedance state after the
falling edge of SOEN.

I/0 Data Bit 0

Numbers MSB RTINS LSB g 'MSB o

15 14 1 o 0 1 14 ol5
2% 21 282 2° 2% , 242
Input from the MSB. Output from the MSB.

Input/ ® Even if more than 16 @® Even if more than 16 clocks

Output Bit clocks are input while are input while SOEN is

Count SIEN is active, only the active, the SO outputs 'O's

Control first 16 bits are input for bits following the first

and the following bits 16 bits.

are disabled. @® If the output data are less
® If there are less than 16 than 16 bits, SOEN goes

SICK clocks while SIEN is inactive when the specified

active, the input data is bits are all output.

shifted to the higher bits.

Interrupt The HSP counts 16 clocks The HSP enables an interrupt
after the rising edge of SIEN| generation circuit in response
and enables an interrupt to the negative edge of SOEN.
generation circuit when the
16-bit data is all input to
the SIR.

Shift The shift register is clear- | Data is set in the SOR with the

Register - ed (all bits are 'O's) after | TFR instruction (ACC - SOR).

Set /Reset a transfer instruction
(SIR -+ ACC) has been
executed.

46 HITACHI

3.2

INTERRUPT

The HSP can generate an interrupt when data is transferred to the HSP

to realize the efficient
shows a schematic of the
(1) Interrupt level and

The interrupt level

the following three

arithmetic operation and data I/O.

interrupt

factors

is one level.

factors:

circuit.

Fig. 3.2.1

An interrupt is generated by

(a) the end of parallel I/0 data transfer to the IR or from the

OR

(b) the end of serial input data transfer to the SIR

(c) the end of serial output data transfer from the SOR
These factors are identified by software.

Fig. 3.2.2 shows an interrupt timing for parallel I/O.

As CS

input enables interrupt, special attention is needed in designing

the peripheral circuit in order not to set CS to logic low un-

necessarily. Moreover, in the user's program, a write to the OR

or a read of the IR in the HSP must be performed after the com-

pletion of external data transfer.

the serial I/0, see 'Serial I/0 Function'.
STR

Parallel Data Transferlj

Cs F5.F3 1S
(CS*FO-F1-F2-F3) PR
—=R
Serial Input
Counting 16 SICK [:]”“w~~-s
Inputs after the _—PS{IF-
rising edge of
SIEN.
Serial Output [:] ;—-
(at the falling -
edge of SOEN) g
L

I'nstruction (STR =>ACC)

-

PC

STACK 0

pC

R D Interrupt] L_D

Flag

pC
Control

Stack

STACK 1

PC=— all“1”

Fig. 3.2.1 SCHEMATIC OF INTERRUPT CIRCUIT

For the interrupt timing of

HITACHI 47

ONIWIL LINWYAINI O/I TATIVIVd ¢°C'€ "8Td

*039 ‘gWf ST UOT3IONIISUT

snotaoad 9y3 JT 9wWT] 92D UOTIONIISUT UB 10J SITeMm jdnaxsjur oayf

(*,T, TTe=0d 3Jo °sed @2Yy3 o3 patrydde ST suwes aYy[)
*9WT3 9TJAD UOTIONIISUT UB I103J SITem Jdniis3jut 9yl 3II ~

(410N)

f

|

\ *9UIINOI 90TAIdS 3dniaajut
9yl jo ssaippe 1iels 9yl o3 sdunp g

A R) SGEL) SECLEEEE ST 5575 |)@
~ > ~ ~]

A X 1 I X X .toov) |
|

I

|

L

*si1noo0 3jdnaa9jul

(ao3Fsueil elep

sTya jo uoriordwod Yyl I931IJ8 pswlojiad 2q ISNW I0IBTNUADIDE puE
¥0/¥I 9yl uoemlaq I9jsuell ele() IPFSuedl BIEP B JO UOTIATdWOD

31q W1

I1q dd

UOTINIIXY
uoT3onaisur

od

0®
3o0To TeUIDIUT

£~

cas

48 HITACHI

(2)

Mask

An interrupt is masked with Iy, Ip, Igy or Igp in the status

register.

Table 3.2.1 THE FUNCTION OF INTERRUPT MASK BIT

Mask bit for all interrupts. This bit is set to 'l' automatical-
ly to mask all interrupts when an interrupt occurs. It is
cleared to '0' by the RTI instruction and the HSP leaves the
interrupt-masked state. Iy can be also set or cleared by the TFR
instructions (accumulator - STR).

Mask bit for the interrupt at the completion of parallel data
transfer through the external data bus. The interrupt is masked
when Ip is 'l', and is not masked when it is 'O'. This bit is
set or cleared by the TFR instructions.

Mask bit for the interrupt at the completion of serial data input
through the external data bus. The interrupt is masked when Igy
is '1', and is not masked when it is 'O'. This bit is set and
cleared by the TFR instructions.

Mask bit for the interrupt at the completion of serial data
output through the external data bus. The interrupt is masked
when Igg is 'l', and is not masked when it is 'O'. This bit is
set or cleared by the TFR instructions.

(3)

(4)

The PF, SIF and SOF bits in the status register can be set by an
external input even under these interrupt-masked conditions.

Stack

The program counter (PC) has two stacks. This allows a two-level

nesting of interrupt and subroutine.

The contents of other registers are saved in the data RAM by soft-
ware. In this case, note that the floating point data in an
accumulator loses its four low-order bits when it is transferred to
the data RAM.

Wait for interrupt

An interrupt sequence 1is not executed during the execution of a
repeat instruction or any instruction repeated by the repeat
instruction, or after the execution of a jump instruction (only

for jump operation) or return instructions (RIN, RTI). Therefore,
the interrupt sequence is never executed with the jump instruction

whose destination is the same address.
Repeat instructions : FRPTA, FRPTB, RPTA, RPTB

Jump instructions : Jcs, JNS, Jzs, JSR, JNE, JNZM, JMP—

Return instructions : RTN, RTI

HITACHI 49

(5)

(6)

50 HITACHI

Vectoring

When an interrupt occurs, $1FF is set in the PC. This is the last
address of the instruction ROM. Therefore, the jump instruction
must be placed in this address to jump to the start address of the
interrupt service routine. Fig. 3.2.3 gives an example of program
sequence. If a program has no interrupt sequence, place the jump
instruction in $1FF to jump to the reset starting address ($001)

in the case of an interrupt error.

Since the output data of the MULT and the data in the DREG are
latched for only one instruction cycle, an interrupt during a
pipeline-based product sum operation makes these data ineffective.
Therefore, the program must mask interrupts during any DREG/MULT

operation.

o Example of Interrupt Service Routine @

Saves the ACCA contents
RAM (address 32 of page
Saves the ACCB contents
RAM (address 33 of page
Determines the cause of
(PF is cleared.)

to

to

an

the data

the data
3).

interrupt.

End of parallel I/0 data transfer?

End of serial input ?

Serial input operation

Parallel I/0 operation.

IR.)

INT NOPA A,3 32
NOPB 4,3,33
TFR STR,A
SRA EE,0,00
JcS PF
SRA EE,0,00
JCS SIF
JMP RETN
SIF
JMP RETN
PF
RETN LDB YX,EE,3,33:
LDA YX,EE,3,32:
RTI
ORG $1FF
JMP INT

Serial output operation
(Transfers data to the SOR.)

(Transfers data from the SIR)

(Transfers data to the OR or from the

Returns the ACCB contents from the data

RAM.

Returns the ACCA contents from the data

RAM.

Returns from interrupt.
(Clears Iy bit)
Interrupt vector address

Jumps to the interrupt service

routine.

Fig. 3.2.3 EXAMPLE OF INTERRUPT SERVICE ROUTINE

HITACHI 51

The CCR contents become ineffective in this routine. The contents
of the accumulator are saved in the data RAM in the fixed point
representation. If necessary, the contents of the STR, CTR, RC,
RO, RA and RB must be saved. However, the data of the DREG and
the product (P) cannot be saved in the data RAM. Therefore, if

using the DREG and P in the main routine, interrupts should be

masked.

52 HITACHI

o Example of Interrupt Service Routine ()

INT TFR CCR,B : Saves the CCR contents in the data RAM
(address 49 of page 0).
NOPB A,0,49

TFR STR,B : Dummy transfer (PF bit is cleared.)
TFR IR,B : Data input
NOPB A,0,0 : tores data in the data RAM

(address 00 of page 0)
LDB YX,EE,0,49: Returns the CCR contents from the data

RAM.

TFR B,CCR

RTI : Returns from interrupt. (IM bit is
cleared)

ORG $1FF : Interrupt vector address

JMP INT : Jumps to the interrupt service routine

Fig. 3.2.4 EXAMPLE OF INTERRUPT SERVICE ROUTINE

Since the ACCB contents become ineffective in this routine, the

main routine does not use the ACCB.

Interrupts are caused only by parallel I/0 data transfer. The
contents of the DREG and the product (P) cannot be restored.
Therefore, if using the DREG and the P in the main routine,

interrupts should be masked.

3.3 DMA (DIRECT MEMORY ACCESS)

The HSP can perform DMA operation through the parallel 1/0 ports DO -
D15. The DMAC (direct memory access controller) for an 8-bit micro-
computer 6800 allows the direct transfer of data between the HSP and

the memory.

o DMA Operation Mode

DMA operation mode can be activated by setting DMA bit in the CTR. In
this mode, the data is directly transferred between the HSP and
peripherals through the IR or OR and the data transfer between the
IR/OR and the data RAM is performed by software.

CTR (DMA bit)
CTR (DMA bit)

1 ; DMA operation mode
0 ; Non-DMA operation mode

]

HITACHI! 53

The HSP provides three pins for DMA operation; TxRQ, TxAK and DEND.

Among some DMA operation modes employed by the DMAC6844, the HSP uses

the HALT burst mode. In this mode, the HSP performs a byte data

transfer using an 8-bit HD6844 as the DMAC.

o DMA Operation

DMA operation mode is activated by a set of the DMA bit in the CTR.

Once the DMA bit is set, the HSP remains in the DMA operation mode until

the reset by software or an input of DEND.

(1)

54 HITACHI

Word transfer

A DMA word transfer is performed by setting W/B, DMA and TxRQ bits
in the CTR. When TxAK input is received, TxRQ bit is cleared and
PF bit in the status register is set. This generates an interrupt
on the completion of parallel I/0 data transfer unless interrupts
are masked. Data is input to the HSP through the IR and transfer-
red to an accumulator and to the data RAM in the interrupt service

routine.

At the completion of the data transfer from the IR to an accumu-
lator, TxRQ bit is set to 'l' automatically, which requests a DMA
service again. PF bit is set at the completion of the data output
from the HSP and an interrupt service routine is started unless
interrupts are masked. In this routine, the data is transferred
from an accumulator to the OR. At the completion of the data
transfer from the accumulator to the OR, TxRQ bit is set to 'l'
automatically, which requests a DMA service again. The DMA bit

is cleared by an input of DEND after TxRQ bit is set, which is the

end of the DMA operation.

While interrupts are masked, the program monitors the PF bit to
detect the completion of data transfer between the IR/OR and the
external memory.

Byte transfer

A DMA byte transfer is performed by setting the W/B bit to '0' and
the DMA and TxRQ bits to 'l'. 1In this case, the data is divided
into two parts; a lower half and an upper half, and data transfer
are performed in that order. In the HSP, data is transferred
between an accumulator and the IR/OR after the completion of 2-byte
data transfer. The DMA byte data transfer employs the same

transfer sequence as the word transfer does.

(193suell BIBP PIOM) OHNIWIL O/1 VWA T-¢°¢

50
5

® ®eiEa @ =3Ea @® =ira
{ \ { \ <l . ST~ 0
| | — N/ a
aNda
MVXL
/ VRN
*p9sSIaAld1 ST
(sng e3Ep UYSNoayl Id93jSueil JO UOTIDAATP 9Yl) M/¥ Pu® ,H, ST $J Qutwil (QT8T9AH) dSH

I P oo T e aNaa b1
anaa

(3nduy)

) (V4 S

(andanQ)
\ S~
{_ X A y LV

\ ' ‘ , \ \ dLSX1L

\ [IN¥DA

N
<
<

/ \ R
S ./ \ an|| CHEN

o Y s W A Y A VY A VY A VY A VY N VY A W A VY B U
J%v_ Pred _..%v_ ang e | A _Ax<|_>al|_ Prea | AdI

(spo Ismg LIVH) SuTwrl (%¥%89aH) OVHA

HITACHI 55

(123suea) eiep 214g) HNIWIL O/I VWA I €°¢ 813

//////44& \ \ \ ff///,/ oy

daddp 10m0T Jadd 1m0 7]

{ —CO— > "~
@ ®3eq @ e3ea
e
[anaa J anda

? ; N \ / > e
ORI anen GO ——

"P3S19A31 ST (Snq BIBP Y3NOIYl 133SUBII JO UOTIDBIATP 3Yy3) M/d pue ,H, ST

S0 Sutwrl (QTQTIAH) dSH

[Tanaa \ S T T T T Tt T T T T T aNaa, byl
(3andur)
X > X X Xm g s~oy

AN

X X X oy
/ \ / \ 4ISXL
N\ [INEDa
/ \ HBYA

A a— [oun
) s Y Y A e S e Y e O e O e R e

NdIN YINd VINd VINd VINd NdIW .
(SPOR 3sang ITVH) SuTwrl (%%990H) OVWA

56 HITACHI

Sets W/B bit to '1'/'0"'
and DMA flag to 'l' by
software.

Set TXRQ bit to 'l' and
requests a DMA service.

N (Byte Transfer Mode)

W/B=1?

B3

(Upper Byte Transfer) Y

TxRQ bit is cleared to
'0' automatically on the

receipt of the TxAK ('1").

N(lower Byte
transfer)

Data transfer to the IR
will be completed on the
falling edge of E clock.

Data transfer to the IR
will be completed on the
falling edge of E clock.
(only lower byte)

[

Sets PF bit and an
interrupt is generated.
Sets IM bit.

HSP Interrupt Routine
} IR - ACCA (data input)
STR -+ ACCB (PF cleared)

HSP interrupt e ACCA ~ Memory
interrupt sequenc (dava storage)

is activated. RTI (IM cleared)

- END=0 Y (End)
during data
transfer?

N

TxRQ bit is set to 'l' I
automatically when data
in the IR is transferred
to an accumulator in the
interrupt routine, and
the next data transfer
is requested.
1

DMA bit is cleared to 'O’
automatically.

[Fud of DMA
Operation J

(Note) This flowchart provides minimum required operations. They can be
altered depending on purpose. When an interrupt is masked, the HSP
monitors the PF bit and latches data in response to setting of the

PF bit.

Fig. 3.3.3 DMA OPERATION FLOWCHART (External memory - HSP)

HITACHI 57

Fig. 3.3.4 DMA OPERATION FLOWCHART

58 HITACHI

Sets W/B bit to '1'/'0’
and DMA bit to 'l' by
software.

Writes the first data
to the OR

Accumulator - OR
TxRQ is set to 'l' auto-
matically and the HSP
requests a DMA service.

N (Byte Transfer Mode)

Y| (Upper byte Transfer)

N(lower byte
transfer)

TxRQ bit is cleared to
'0' automatically on the
receipt of the TxAK ('l').

S

Data transfer from the OR
will be completed on the
falling edge of E clock.

T

Data transfer from the OR
will be completed on the
falling edge of E clock.
¥ (only lower byte)

L]

Sets PF bit and an
interrupt is generated.

Sets Iy bit. HSP Interrupt Routine
Memory -+ Accumulator
(data transfer)
‘ Accumulator > OR

- (data output)
HSP 1nFerrupE sequence STR + Accumulator

is activated. (PF cleared)
RTI (IM cleared)

DEND=0 Y (End
<:::§:;in data~> (End)

ransfer ?
N

The next data is written L.
into the OR with the TFR DMA bit is cleared to '0'
instruction (Accumulator automatically.

+ OR) in an interrupt
End of DMA
Operation

routine, and at the same
time, TxRQ is set to 'l'
automatically.

(Note) This flowchart provides minimum required operations.

They can be
altered depending on purpose.

When an interrupt is masked, the HSP
monitors the PF bit and transfers the next data to the OR in response
to the setting of the PF bit.

(HSP ~ External memory)

Address Bus Data Bus

16 (8)
Ao~ As)
Do~D; | KK
HD6800
MPU) —
&, R/W —
4
L B S
BA HALT
12 <
ENNP RN
o 2 o | Xl >
L
8 S Decoder
DGRNT DRQH e B— ».-D—"
HD6844 Ao~As b _—
(DMAC) R/W
& DMA —
Do~ Dy -
%—FSV
xR —
TxRQ Decoder
HD74155
=a 13 P
CS /TxAKB B ivb
1Y, b—
TXAKA Ay >o—
wad
TxSTB
IRQ /DEND —

Do ~D;

CS. Ap~

R/W

RAM

* Open drain

Fig. 3.3.5 DMA SYSTEM CONFIGURATION

cs
Fo~F,
R/W
1K

Do~ D7

TxRQ

TxAK

DEND

HD61810
(HSP?

HITACHI 59

3.4 BIT I1I/0, TxRQ

1-bit data can be input and output using BIT I/0 and TxRQ bit in the
CTIR.

The BIT I/0 bit can be used as the I/0 pin for 1-bit data as shown in
Fig. 3.4.1.

(1) When used as an input pin

Write 'l' into the BIT I/0 bit beforehand with the TFR instruction
(Accumulator + CTR), and the output MOS transistor of BIT I/0 is
turned off to allow an external data to be entered. The input
data is transferred to an accumulator through the data bus with
the TFR instruction (CTR- Accumulator). Note that it is necessary

to hold the input data during instruction execution.

(2) When used as an output pin

As an output of the BIT I/0 is open drain, a pull-up resistor must
be comnected externally. This output signal can control the HSP

peripherals, and can also interrupt the MPU.

Vee

; :] Input Signal
HsP Ill ">t0 the HSP
Internal f

ON at External Data Input
OFF at External Data Output

Data Bus [Latches|
BIT I/O——{E)x»4
Ds bit

Controlled by
TFRAA, CTR

= Output Signal
from the HSP

1

7
Controlled by
TFRACTR, A H%iJ

Fig. 3.4.1 FUNCTION OF BIT 1/0

In the non-DMA operation mode, TxRQ can be used as a 1-bit output
pin. Because of the open drain output, it also needs a pull-up
resistor connected externally. However, TxRQ cannot be used as an
input pin. When data is input with the TFR instruction (CTR ~
Accumulator), the value written in TxRQ bit is read out independent-

ly of the external state ('H' or 'L').

60 HITACHI

SECTION 4
ARITHMETIC OPERATION

E

.1

ARITHMETIC OPERATION

The speech processing and the signal processing in telecommunications
specially need high speed and high precision. The HSP provides a
floating point arithmetic unit on a single chip to meet these needs.

.

DATA FORMAT

Data formats in fixed point and floating point arithmetics are

illustrated in Fig. 4.1.1.

(1) ALU

(a) Fixed point data
(i) Binary representation : Represents the value of
0 2l6-1,

(ii) Two's complement
representation : The most significant bit

corresponds to a sign bit.
(b) Floating point data
Floating point data consists of a mantissa part and an
exponent part using two's complement representation. The
most signifiﬁant bit of each part corresponds to a sign bit.
Decimal point is set between bit 15 (MSB) and bit 14 of a
mantissa.
Mantissa : Represents the value of -1 "v 1-2-15,

Exponent : Represents the value of -8 "™ +7(integral number) .
(2) Multiplier

(a) Fixed point data
Fixed point multiplication is performed using two's complement
representation. The most significant bit corresponds to a
sign bit. Input data is 12 bits and output data is 16 bits.
(b) Floating point data
Floating point multiplication is performed using two's
complement representation. A mantissa of input data is 12
bits and of output data is 16 bits. An exponent part of
input /output data is 4 bits.
Decimal point is set between bits 15 and 14.

Mantissa: Input data —— Represents the value of -1 % 1—2—11.

Output data — Represents the value of -1 % 1-2715,

Exponent: Represents the value of -8 % +7 (integral number).

HITACHI 63

64

LSB

(A) ALU
15 0
Binary T T T T T T T T T 1T 17 T
representation
MSB LSB
A
Two's T T T T T T T T T T 17 T
complement S.
representation
Adecimal point
(a) Fixed point data format
mantissa exponent
15 3 0
T T T T T T T T T T T 1 T T T
S S
MSBA LSB MSB
(b) Floating point data format
(B) Multiplier
' 15 4
Two i T T T T T T T T T 1
complement
representation S nput data
A
15 0
! T T T T T I T T 1 T 1
S. Output data
A
(a) Fixed point data format
mantissa exponent
15 4 3 0
Two's T T T T T T T T T —T
complement S. Input data S
representation 7
15 03
T 1 T 1 T T T T T T T T T T T T T
S. Output data S
A

(b) Floating point data format

Fig. 4.1.1 DATA FORMAT

HITACHI

4.2 TFIXED POINT ARITHMETIC
4.2.1 Fixed Point ALU

The HSP can perform ALU operations in either fixed point or floating

point representation.

Fixed point data is always represented with 16 bits, and an exponent
part used in floating point data representation is undefined. The HSP
instructions select fixed/floating data representation. For details,
see '"INSTRUCTION'. Fixed point ALU operation is performed in binary

representation or two's complement representation.

(1) ALU input/output data format

The ALU input/output data is represented with 16 bits. Fig. 4.2.1
and 4.2.2 illustrate I/0 data format.

(An undefined exponent part is also shown.)

e ALU input

0
ROM, RAM, GR [Data J

(X, Y-Bus) ‘ |
V o
<£} [Data T Exp. |

ALU Input \ Unused

15 0 3 0
ACC, P [Data [Exp. |

— T

. ' Ly d
G) 15 G 0.3 Euse
[Data | Exp. |

t~Unused

ALU Input

Fig. 4.2.1 ALU INPUT DATA FORMAT

e ALU output

A result of the ALU operation is output to an accumulator. When
the result is stored into the RAM/GR, the data format is described
in Fig. 4.2.2.

HITACHI 65

ACC, P

| Data | Exp ,
N T
G 515 G 0; tunused
RAM, GR [Data |

Fig. 4.2.2 ALU OUTPUT DATA FORMAT (RAM, GR)

(2) Overflow

An overflow occurs when an operation yields a result beyond the
range of representable value. In this case, the OVFP bit in the
CIR enables an overflow protection. If the OVFP bit is set to
one, an overflow is protected. If set to zero, an overflow

protection is cleared.

An overflow protection fixes the positive value more than 1-2-15
to 1—2_15, and the negative value less than -1 to -1. 1In this

case, data is represented in two's complement.

1_2_]_5 ’ \ PN

value

0.0 t Lot
o/ /

-1.0

A
~o S

(a) No overflow protection (b) Overflow protection

o A dotted line shows a result from the ALU, and a solid line shows

an input of the accumulator.

This figure shows filter outputs every sampling period with time (t)

for horizontal axis.

Fig. 4.2.3 OVERFLOW PROTECTION

66 HITACHI

4.2.2 Fixed Point Multiplication

The HSP provides an exclusive multiplier (MULT) for a high-speed

multiplication.

(1) Fixed point multiplication system

The MULT performs a multiplication in two's complement representa-
tion. The input data is 12 bits, and the output data is 16 bits,

which produces a result including truncation error.

Input 1

lo.oooooooooooJ (12 bits)
Input 2
»[o 0000000000 o0l (12 bits)
Result

[0.0 0000000000000 0] (16bits)

Fig. 4.2.4 MULTIPLIER RESOLUTION

Multiplication is performed according to quadratic Booth algorithm

as shown in the following formula.

s 5
Z=X-Y Z Cyvoiva byziess 2yzivs) s Xe 220 Z P2

i 0 170

The partial sum P; is obtained by the blocks in Fig. 4.2.5.

X
G A=Yy DY piag
A B =y y -y
Selection of 2i+5 2it4 21+3
B 0, X, 2X FYgius Yaira Yairs
Yo B— _
{ s Logic of C=Yyius
i Yooer o Booth J»L (Note) Outputs data X if A=l.
algorithm
Y B C Change of Outputs data 2X if B=l.
polarity Outputs a negative value if C=1.
Pi

Fig. 4.2.5 PARTIAL SUM BLOCK DIAGRAM

HITACHI 67

The MULT operation is illustrated in Fig. 4.2.6.

12 bits
Xi~15
6 8 10 12 12 12
vs ™1 Y7 —o Yo =i Y1~ Y1
y¢™] Dec.1 ys ™1 Dec.2 ¥s— Dec.3 | Yio-={ Dec.4 |¥iz— Dec.5 | Y= Dec.6
¥5—1 v yo — Yi1—= Vi3 —=f Y15—m
Proy 7 Prlo Py 11 Py b 13 Pri L13 Prs L13
carry look ahead adder
16
result
Fig. 4.2.6 MULT BLOCK DIAGRAM
Pro l ; T T/
Pri [T T
| .
Prs I T T
Prq I P
P -
™ | I o
|
el L1 L 1 1 Il 1 L L 1 1 L L 1 L |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Output of MULT
P (16 bits)
truncated
Addition before add.
[

68 HITACHI

Fig. 4.2.7 ADDING OF PARTIAL PRODUCT IN MULT

Fig. 4.2.7 illustrates a sequence of adding of partial products.
An truncation error is included in the result because the lower 6
bits are not added. As an output result is 16 bits, the LSB is
neglected after the add operation. In this case, this result has
a truncation error of max. t2/216, compared with the case when
counting fraction over 1/2 as one and disregarding the rest of the
LSB.

If input data X is $000 and Y is not $000, the product may not be
$0000. 1If Y is alsc $J00, the product is $0000.

(2) MULT input/output

ROM, RAM, GR i .3 :
’ ’ Data | I
(X, Y Bus) 7 t
1
|
{:} B % Unused
r Input data
MULT input
15 43 03 0
1
ACC [Data | [Exponent |
(X-Bus) H ' T t_Unused
|
{} 115 4 Unused
| Input data
MULT input
15 0
MULT output

(®) r Data AAJ

(3

Fig. 4.2.8 MULT INPUT/OUTPUT DATA FORMAT

Multiplication

The MULT always operates and receives data from both the X-Bus
and the Y-Bus (free-running multiplier). However, in the HSP, the
only ALU operation instructions can specify the X- and Y-Bus data.
Therefore, the multiplication should be performed with the ALU

operation instructions.

A product (P) of multiplication is used in the next instruction
cycle. If the product is represented in the fixed point, the next
instruction should be executed in the fixed point representation.
Therefore, when the present instruction is a fixed point one, the
next instructionm, if (P) is used in it, should also be a fixed

point one. The same applies in the floating point instructions.

HITACHI

69

Table 4.2.1 THE MULT INPUTS BY ALU OPERATION INSTRUCTIONS
Instruction Format MULT Input
Addressing _ Note
Mode Memory Output X-Bus Y-Bus
ROM/RAM data | ROM/RAM data | 0°% if X-Bus and
Pointer XY (n, m) (n page) (m page) Y-Bus data are
addressing read from data ROM.
mode
ROM/RAM data
XG(n, 2) (n page) GR (R)
Direct ROM/RAM data
addressing — ACC (direct
mode address)

* A product (P) is used in the next instruction.

For details of ALU operations, see 'INSTRUCTION SET'.

(4) Overflow

The MULT performs a multiplication in two's complement representa-

tion.

and an overflow occurs.

maximum positive value (1-2715),

70 HITACHI

When -1 and -1 are multiplied together, the result is +1

In this case, the result is fixed to the

4.3 TFLOATING POINT ARITHMETIC
4.3.1 Floating Point ALU (FALU)

The HSP provides a floating point ALU (FALU) to perform floating point
operations. The FALU has two inputs (20 bits) which consists of a
mantissa. (16 bits) and an exponent (4 bits). A result is 20 bits and

is delivered to an accumulator (ACC).

(1) FALU input/output
e FALU input

The data ROM/RAM and GR is 16-bit width, while the input to FALU
should be 20-bit. Therefore, 'O's are added for lower four bits for
for an input to FALU. If a source register is an accumulator or

the P register, 20-bit data is input to the FALU in the same bit

length.
Data ROM/RAM,GR | 15 3 0
i t
(X, Y-Bus) //[Mantissa _ !Exponen
Phd - | \
{} L -7 4 3.~ 03 01
i T T
i Mantissa ;0 ;OEO;O |Exponent
FALU Input
15 03 0
ACC, P I7 Mantissa IExponquJ
! |
! |
G 15 0,3 0!
FALU Input [Mantissa iExponentl

Fig. 4.3.1 FALU INPUT DATA FORMAT

e FALU output

The contents of the FALU are transferred to the ACCA or ACCB.

This 20-bit data of the accumulator can be transferred to the FALU
in the same bit length. However, if the 20-bit data is transfer-—
red to the data RAM or GR (16 bits), lower 4 bits of a mantissa is

truncated.

HITACHI 71

ACC

~. S
~ S 1
& ~ s -

Data RAM/GR

03 0
Mantissa]AExponent]

43 0;
Mantissa]Exponentl

(2)

72 HITACHI

Fig. 4.3.2 ACCUMULATOR - DATA RAM/GR DATA TRANSFER FORMAT

FALU operation

The FALU provides functions of digit adjustment and normalization
in addition to the fixed point ALU to perform a floating point

arithmetic operation.

The following formula represents a floating point arithmetic

operation.

input data A; = a;-2¢! input data A; = a,-2%?

(a1,a2 : mantissa, e;, ez exponent)

In case of floating point add, data digit is adjusted with the

exponent part as follows;

e - e
Ay + Ay = a1+2%0 + 2,-2%2= a2;.2% 4+ a23.2% (e1 > e2)

e2-e1

In this case, a; = ap-2 and the value of a, is shifted right

(e1-e2). After that, the ALU performs an add operation with these
data. The result is normalized, which means that a mantissa is
fixed to the maximum value.

AL+ Ar = (a; + a3)*2%! = a-2®

Fig. 4.3.3 shows a sequence of a floating point ALU operation.

Input Data A;

Input Data A,

(3)

[a; (mantissa) | e AJ I a, (mantissa) I ey |
16 M4 16 4
N .’ a;/a; selection signal
a; oray? <’ o
2N e1>e;y?
A
digit <
adjustment

16 ~i£16

\V
fixed point add/
sub.

iL mantissa

exponent v

normalization

result

16

ACC [7 a (mantissa) 1 e

Fig. 4.3.3 FLOATING POINT ALU (FALU)

Overflow, underflow

An overflow or underflow occurs when an operation yields a floating

point result beyond the range of -8 to +7 of an exponent part.

(a) Overflow

The FALU must always perform an overflow protection during

floating point arithmetic operation.

control register must be set to 'l' beforehand.)

(The OVFP bit of the

When an operation yields a result beyond the range of negative

and positive maximum value representable with 20 bits, an

overflow is protected by fixing the data to the maximum value.

An overflow protection fixes a positive value to (1-2"1%)-27

and a negative value to (—l)'27.

HITACHI 73

(b) Underflow
An underflow occurs when an exponent data is less than -8
(e < -8). An underflow cannot permit normalization of data
and fixes the exponent part to -8. Therefore, the full
mantissa precision is not maintained.
Fig. 4.3.4 gives an example of an underflow in floating point

subtraction.

Mantissa Exponent
Input AlIO,Illlllllllllll’lllllllll|1'111—] l&’ololol

||||l|l"|'|||| L
D Tnput Apfo 1 111 11 1111 110 00l [oo e ol

(0070000000000 011 1] [00 0 0]
O

IO.IOIO IO |Ol1|1 |1 IO‘O‘O‘O'O'O'O ro—l IL'() '0 R}‘l...fiXQd to -8

Fig. 4.3.4 AN UNDERFLOW REPRESENTATION

If both exponent parts of data are fixed to -8, the FALU
performs a fixed point arithmetic operation in appearance.

(except when an exponent part of a result is not -7.)

Fig. 4.3.5 shows results when an underflow occurs.

Mantissa Exponent
151413 121110 9 8 7 6 5 4 3 2 1 0 3210

[0.0 0000000000000 0] [0007070

e

L]

Sign MS?Eii§a Miziiiza Exponent | FALU operation
0 1 -8 v 7 Normalization
+
0 0 -8 Underflow
1 0 -8 v 7 Normalization
) 1 1 -8 Underflow

%

* In this figure, an overflow is not taken into
consideration.

Fig. 4.3.5 RESULTS WHEN UNDERFLOW OCCURS

74 HITACHI

(4)

(5)

A + Ay

Input A,

The contents of the condition code register (CCR)

The contents of the CCR depends on a mantissa value of a result

after digit adjustment.

FALU arithmetic errors

(a) Error in digit adjustment

If exponents of FALU two inputs differ in value, a mantissa

of smaller data is shifted right by digit adjustment circuit

and its lower bits are truncated, which is caused by 16-bit

arithmetic operation.

The repetition of this operation causes an accumulation of

errors.

15 Mantissa

fo?1‘1'1‘1'0'0‘0'0'0‘0'0

'0'0'0'0'

Exponent
0 3 0
0101
0 3 0

Input A, [0 170 1 1 1 1111

T

Aq

digit
adjust

Result

T

[0"17171717 07070 0 07070

00 0 'o[

0101

T 1 1 1 1 71
A, {07070 070701011

11’1 1:1 111 1] [o'1701]

—
Truncation

15

0

0’11 11010

T 11 ‘1J

0101

Fig. 4.3.6 AN EXAMPLE OF TRUNCATION AFTER DIGIT ADJUSTMENT

HITACHI 75

76 HITACHI

(b)

(c)

An error in subtraction

Floating point subtraction can be performed as follows;
. el . ez
input data A; = a;-2"", input data Ay = a,-2
(a1,a2: mantissa, e;,ez: exponent)

_[a1e2% 4 ay2®t (e > ey)

A - Ay = al'zel - 82-262
ai-2%% + a3.2%2 (e; < e,)

Each mantissa part is;

ai = a;.2817®? (shift a right (e2 - e1) bit position)

15

ai = ap + 27 (Two's complement of a,)

(3, o-15y. e2-el
(shift a right (e1 - e2) bit position)
g

[
[
I

However, in case of e; > ez,

ay = (3,)-2%% ©Y(3;: one's complement of aj)

Errors occur caused by this approximate value and digit

adjustment described in (a).

Accumulated errors

Errors are accumulated as arithmetic operation is performed
with digit adjustment and approximation of value repeatedly.
If the FALU input data is not normalized, the data must be
once saved in an accumulator to normalize them. 1In case of
using the product (P) as FALU input data, the contents of

product must be normalized in order to decrease errors.

Errors from subtraction are prevented by the execution of the

NEG instruction and addition.

4.3.2 Floating Point Multiplier

(1) Floating point multiplication system

The floating point multiplier (FMULT) consists of the MULT and an

adder of exponent parts.

12

E

put A; E?futAz
4 12 4

Nl
Fixed point
multiplier

MULT

Fig. 4.3.7

Mantissa
Output

Adder

4

Exponent
Qutput

BLOCK DIAGRAM OF THE FMULT

Input /output data format is as follows;

mantissa

exponent

12 bits x 12 bits » 16 bits

4 bits X

4 bits -~ 4 bits

The floating point multiplication is performed in the same way

with the fixed point multiplication.

®

15 43 0
Data ROM/RAM,GR [Mantissa [ExponentJ
(X, Y-Bus) ; ; }
{} :w 413 :
rﬁ Mantissa |Exponent|
FMULT Input
AcC 15 03 0
| Mantissa E [Exponent |
(X-Bus) Ny Sy ;
~ o ~ o \
< e S
[Mantissa | Exponent]
FMULT Input
FMULT Output 15 03 0
lﬁ Mantissa Exponent

Fig. 4.3.8 FMULT INPUT/OUTPUT DATA FORMAT

HITACHI 77

(3)

(4)

78 HITACHI

Overflow, underflow

The HSP protects an overflow/underflow on an exponent part and

overflow on a mantissa part.

(a) An overflow of an exponent part

An overflow occurs on an exponent part (e) when e > +8

resulting from adding two exponent parts in f]oating point

multiplication.

C) If a mantissa of a result is not normalized and e = +8,
the mantissa is shifted left 1 bit and the exponent part
is fixed to +7.

If the exponent is more than +8, the result is fixed to
the maximum value representable. (The sign does not
change.)

@ 1f a mantissa of a result is normalized, the mantissa is
fixed to the maximum value representable and the exponent
part is fixed to +7.

(b) An underflow of an exponent part
An underflow occurs when an exponent part of the result is
less than -8 in floating point multiplication. An underflow
protection fixes the exponent part to -8 and shifts a mantissa
right (-8-n) bit position. This shift operation is executed

in the FALU.

(c) An overflow of a mantissa
A result of multiplication of -1 and -1 is fixed to the
maximum positive value (1—2‘15) when only mantissa is

effective.

FMULT arithmetic errors

The FMULT utilizes the fixed point multiplier (MULT) for arithmetic
operation of a mantissa. The FMULT input data must be normalized
in order to minimize errors. However, usual input data to the

FMULT are automatically normalized before input.

4.4 DATA TRANSFORMATION

The HSP inputs or outputs data in the fixed point representation, while
it performs operations in the floating point representation for higher
precision. When a fixed point data is input from an A/D convertor to
the HSP, the data is transformed to the floating point data and the HSP
performs an arithmetic operation with these data. A result of the
arithmetic operation is transformed to the fixed point data before the
output to a D/A convertor. Transformation between the fixed point
representation and the floating point representation can be efficiently
performed with a single instruction using a constant in the data

memory (data ROM/RAM) as a transformation scaling constant.

HS P
J Floating point Floating
Fixed poindg i
. - point data
data (16b) Arithmetic e i
antissa 16l
/\/"""‘ — exponent 4b /Z/W
— o a/D b i> > D/A
. Floating N
point data Fixed point
mantissa 16b Dynamic range data (16b)
exponent 4b) 32 b
|

Fig. 4.4.1 DATA TRANSFORMATION

(i) fixed point data - floating point data

The fixed point data (16 bits) of an accumulator is transformed to
the floating point data (20 bits) using an exponent part of Y-Bus
data specified by an instruction as a scaling constant. The FLTA or

FLTB instruction performs this transformation.

Normalization with a scaling factor is represented in the following

formula.

Ay x 270 (a Ape2™t = a.2™)

A : fixed point input data
n : scaling constant
A1: a mantissa after transformation

ni: an exponent part after transformation

HITACHI 79

80 HITACHI

Floating point data (A X 2%) is normalized, and the normalized
data (A} x 20l) is stored in an accumulator.

Fig. 4.4.2 shows a sequence of transformation from the fixed point
data to the floating point data. An example of data transforma-

tion is given in Fig. 4.4.3.

Input data
15 0 15 43 0
A (note) Z
Ax 2 n
ALU
A x 28
Normaliza-
tion
15 03 0 N : Scaling constant
Result A Mnemonic : FLTA
A x 2™ FLTB
_T (Note) Any value is allowed
AcC for higher 12 bits (Z).

Fig. 4.4.2 DATA TRANSFORMATION
(Fixed Point Data - Floating Point Data)

Fixed point input
data $0456

Transformation Instruction
(Using Y-Bus data

$0000 as a

scaling constant)

15 0

fo0 000 1000107101 1 0] (Input data)

L

(Data in location

FLTA EE 0, 00 (0,00) is $0000.)

U

Floating pOint ‘5 T Il T T |rl.lak‘[|lt .‘ T 1 T T T T T T 0I3 T e>I{p'l 0
data I?).OOOOIOOOI‘OIOIIO:OOOLI
$04560 {:¥
(Normalization)
$4560C 15 mant. 03 exp. 0
” T T T T T T T T T T T T T : T T T
$4560 x 274 01000 10101100000 1 10 0] (Result)
Fig. 4.4.3 AN EXAMPLE OF DATA TFANSFORMATION
(Fixed Point Data - Floating Point Data)
(ii) floating point data - fixed point data

The floating point data (20 bits) of an accumulator is transformed
to the fixed point data (16 bits) with an exponent part (4 bits)
of Y-Bus data specified by an instruction as a scaling constant.

The FIXA or FIXB instruction performs this transformation.

Normalization with a scaling factor is represented in the follow-

ing formula.
B x 2 » B x 2% (B = B-2"7H)
B : a mantissa of floating point input data
m : an exponent part of floating point input data
% : a scaling constant (an exponent part of Y-Bus

output data)
By: fixed point data after transformation

Data B x 2@ is normalized with a scaling factor 2%, 1If 2 > m,

a2 mantissa is shifted right (£-m) bit position to be a Bi. If

¢ < m, a mantissa is shifted left (m-%) bit position to be a B;.
If an overflow occurs, mantissa Bi1 is fixed to positive or

negative maximum value.

HITACHI 81

A mantissa of Y-Bus data (12 bits) must be set to zero ($000).
After normalization, 2% is neglected and only B; is stored in the
accumulator. When % is zero, the floating point data equals the

fixed point transformed data.

Fig. 4.4.4 shows a sequence of transformation from the floating
point data to the fixed point data. An example of data transforma-

tion is given in Fig. 4.4.5.

Input data

15 43 0 15 43 0
Acc | B EN [(Note)8000 [¢]
Bx2™ 4
-V
FALU
BB 2%
15 0

% : scaling constant

Mnemonic : FIXA
ACC FIXB

‘ (Note) A mantissa of the
scaling constant (Higher 12 bits)
should be set to zero.

Fig. 4.4.4 DATA TRANSFORMATIOH
(Floating Point Data - Fixed Point Data)

82 HITACHI

Floating point

$4560C 4
=$4560 X 2~

15 mant. 03 €xp. 0
I0'|1|0|0|0;1|0|1|0|1\1|0[0|0\0»0Elllnol(LI (Input data)

%

Transformation instruction

Using Y-Bus data
(($0000=$000 x 20y FIXA EE 0, 00

as a scaling constant
15 mant. 03 exp. 0
Shift-right [0.0 0 0 0 10 00 1010171 07000 0]

VU

Fixed point data] [0.0 00 0 1 000 1010 1 10| (Result)
$0456

Data in location
(0,00) is $0000.

Fig. 4.4.5 AN EXAMPLE OF DATA TRANSFORMATION
(Floating Point Data + Fixed Point Data)

HITACHI 83

(iii) Data shift using data transformation

The HSP has no instruction to shift data n bits in high speed.

However, the shift operation can be performed freely with data

transformation between floating point and fixed point.

16-bit fixed point data in the ACCA can be shifted n bits arith-

metically by transforming it to the floating point data and then

back into the fixed point data as shown in the following.

15 0
ACCA | A 1
(FIX) {;}
FLTA EE.4,0 ~——-====——====m—————un The data located
> in "4,0" is $000n
<:> (n=-8 to +7).
15 03 0
ACCA [Ay I]——wThe effective bit
(FLT) count never de-
creases on account
YC} of normalization.
FIXA EE,4,1 === The data located
in "4,1" is $0002
(2=-8 to +7).
A 15 0
CCA
(FIX) | Az |
shift bit count: shift right of (2-n)
Equivalent bit manipulation
L~ 1 n-2) bit
15 (2-n) bit 0 15 (0
ry : T ; — o
L>n 2<n

Data can be shifted in the range of -15 to +15 bits.

Keep it in mind that an overflow can be protected in case of the

left

shift. A left shift of (n-%) bits is equivalent to the

arithmetic A2=AX2(H-1), and if the result is out of the range of

-1.0 to +1.0-2715,

84 HITACHI

(ex.) o data

$3000
shift
shift
$FOFO
shift
shift

left
left

left
left

of 1
of 2

of 3
of 4

>

>

>

>

$6000
$7FFF

$8780
$8000

it is fixed to the maximum value.

SECTION 5
INSTRUCTION

5. INSTRUCTION

5.1 GENERAL DESCRIPTION

The HSP provides 77 instructions. These instructions can execute the

HSP arithmetics effectively in just 250ns cycle.

(1) Data format

The HSP provides fixed point instructions and floating point
instructions. This allows the HSP to execute floating point
arithmetics. The transformation between the fixed and floating
data forms can be performed in a single step of transformation
instructions. An overflow is automatically protected in ALU

arithmetic operations.

(2) Horizontal microprogram

The HSP provides an efficient and easily programmed ALU instruc-
tion set. The high throughput is the result of a horizontal
microprogram. This instruction allows the execution of some opera-

tions in parallel in a single instruction cycle.
An ALU operation instruction permits the following operations:

(a) ALU operation

(b) MULT operation

(c) Read of memory

(d) Write to memory

(e) Autoincrement of the address pointers

(f) Autodecrement of the repeat counter

(3) Multiplication

As the HSP multiplier always operates, the HSP has no MULT
instruction. Once two data are input to the MULT, the multiplica-
tion is executed. The input data are from the data ROM/RAM,GR, or
an accumulator. In this case, the data may be input to the ALU at
the same time depending on the instruction. The result of the
multiplication can be used as the P contents (product) in the next

instruction cycle.

HITACHI 87

5.2 INS

The

This

When the ALU operates in the floating point form, the multiplica-
tion is also executed in the floating point form. In the same
way, when the ALU operates in the fixed point form, the multi-
plication is executed in the fixed point form. Therefore, if the
next instruction uses the product of the multiplication, the
arithmetic should be performed in the same form (FIX/FLT) as shown

in the following examples of program.

ex. (i) Correct description
FNOPA EE,XY(0,1),RA+ ; floating point multiplication
FADA PA,EE,XY(0,1),RA ; addition of product (floating
point addition)
(ii) Incorrect description
FNOPA EE,XY(0,1),RA+ ; floating point multiplication

ADA PA,EE,XY(0,1),RA ; addition of product
(fixed point addition)

TRUCTION SET
HSP instruction set is divided into six classifications:

(1) ALU operation instructions

(I1) Immediate instructions

(II1) Jump instructions

(IV) Register data transfer instructions

V) Register increment/decrement instructions

1) Return instructions

section contains descriptions of individual instructions.

Assembler syntax expression and description format are explained as

foll

ows. A shows a space.

e Assembler source statements

I. ALU operation instructions

Example:l

LABLAFADAAYA,A,XY (1,3) ,RA,RO+A ; ACCA<—-M (Y) +ACCA

4 4 + 4
<label><mnemonic><operand> <comment>

88 HITACHI

These instructions execute ALU arithmetic operations.

<label> Label field in assembler expression

<mnemonic> Operation field indicating ALU operation

<operand> Specifies ALU input, addressing/reading/writing of data
memory, autoincrement of the RAM/ROM pointers, and auto-
decrement of the repeat counter. Operand expressions of
each instruction are the same with one exception: a part of
operand expressions depending on addressing mode. Common
expression is described in <Operand ® - C>> at the end
of this section.

<comment> Optional field for comment

ALU operation instructions <mnemonics>
There is a difference in operand expression between I and I'.

I FADA, FADB, ADA, ADB, FSBA, FSBB, SBA, SBB, FLDA, FLDB, LDA, LDB,
ANDA, ANDB, ORA, ORB, EORA, EORB

I' FABSA, FABSB, ABSA, ABSB, FRPTA, FRPTB, RPTA, RPTB, FNEGA, FNEGB,
NEGA, NEGB, INCA, INCB, DECA, DECB, SRA, SRB, SLA, SLB, FLTA, FLTB,
FIXA, FIXB, FCLRA, FCLRB, CLRA, CLRB, FNOPA, FNOPB, NOPA, NOPB,
FSGYA, FSGYB, SGYA, SGYB

11. Immediate instructions

Example :I

LABL A LIA A $3C5F A ;ACCA<-0.47165
4 4 4 4
<label><mnemonic><constant> <comment>

These instructions immediately set data to regisers.

<label> label field in assembler expression

<mnemonic> operation field indicating immediate instruction
<constant> value transferred to a register

<comment> optional field for comment

Immediate instructions <mnemonics>

LIA, LIB, LIRA, LIRB, LIRO, LIRC

HITACHI

89

III. Jump instructions

Example

LABL A JCS A LAB A ;JUMP IF C=1
4 4 4 4
<label><mnemonic><constant> <comment>

These instructions perform three kinds of jump operations:

unconditional jump, conditional jump, and subroutine jump.

<label> label field in assembler expression
<mnemonic> operation field indicating jump
<constant> specifies jump address

<comment> optional field for comment

Jump instructions <mnemonics>

JCS, JNS, JzS, JSR, JNZ, JNZM, JMP

IV. Register data transfer instructions

Example :l

LABL A TFR A A, STR A ;ACCA -> STR
4 4 + 0t — & 1

<label><mnemonic><registerl><register2> <comment >

These instructions transfer data between registers.

<label> label field in assembler expression
<mnemonic> TFR

<registerl> specifies the source register
<register2> specifies the destination register

<comment> optional field for comment

Register data transfer instructions <mnemonics>
TFR

There are 38 transfer instructions ((:) to GB) resulting from

combination of the source register and the destination register.

90 HITACH!I

V. Register increment/decrement instructions

Example :

LABL A INCRA A

>

RA<-RA+1

4 4
<label><mnemonic>

1\
<comment>

These instructions increment or decrement registers.

<label> label field in assembler expression

<mnemonic> operation field indicating increment/decrement of registers

<comment> optional field for comment

Register increment/decrement instructions <mnemonics>

INCRA, INCRB, INCRO, DECRA, DECRB, DECRO, DECRC

* INCA, INCB, DECA and DECB are not included in this category.

See I' for these instructions.

Return instructions

Example :l

LABL A RTL A 5

VI.

INTERRUPT RETURN

4

4

<label><mnemonic>

+

<comment>

These instructions perform a return from interrupt or subroutine.

<label>

<mnemonic>

<comment>

Return instructions

label field in assembler expression
operation field indicating a return from interrupt or
subroutine

optional field for comment

<mnemonics>

RTI, RTN

HITACH! 91

e Description format

Each instruction is described in the following format.

92 HITACHI

Assembler (:) (Note) In this format, shows
Syntax a space and [] can be
Example C) omitted.
Operation
©)
An ALU operation
instruction has two
addressing modes:
pointer addressing
Instruction C) mode and direct
Code addressing mode.
CCR Thereforg, two
OVFP CD dgscrlptlons are
given for an
instruction.

assembler syntax:

Assembly language syntax format

example:

An example of full expression for an instruction.

operation:

A description of operation. Common expression of operands is
explained in <Operand (@) - (@ > at the end of this section.
instruction code:

Machine code of each instruction consisting of 22 bits.

For details of instruction code, see APPENDIX 2 'INSTRUCTION
CODE'.

CCR, OVFP

Shows the status of the CCR and the OVFP bit in the CTR. The

contents of the CCR changes depending on instruction execution.

The value of the OVFP bit is shown only when an instruction
execution affects the OVFP bit. This bit must be set to 1
beforehand if necessary. If set to O, the instruction may not

be executed correctly.

Register data transfer instructions (TFR) are described in the

following format.

Transfer No.

Expression)

Operation

Instruction
Code @

CCR ®

@ expression:
Assembler source statements of the TFR instructions with

omitting label and comment fields.

@.0.® :

See @, @ and @ in the former page.

The page of each instruction is listed in APPENDIX 3, 'HSP
INSTRUCTION SUMMARY'.

HITACHI 93

FADA

I. Pointer addressing mode

Assembler [<label>] AFADAA <operand (A)>[A <comment>]
syntax
Example FADAAYA, A, XY (1, 3), RA, RO+
O ® ®
Operation ® ALU operation

Floating point add

°® Operand()

Operand(:)indicates input data of the ALU.

The content of operand (:) is shown in the following table.

Operand() ALU operation (floating point)
PA P(20 bits)+ACCA(20 bits)>ACCA(20 bits)
YA Y(16 bits)+ACCA(20 bits)>ACCA(20 bits)
PX P(20 bits)+X(16 bits) . —~ACCA(20 bits)
YX Y(16 bits)+X(1l6 bits) “~ACCA(20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

® Operand @’\4@

For details of operand C)WCD, see 5.2.1 'Operand C)'.
In 'Operand()', "ACC" means ACCA.

Instruction

212019 1817161514 131211 10 9 8 7 6 5 4 3 2 1 0
code lofofofofol T Tofo[T Wl [[T[TTTTT]
N VA N A S [}
(X,Y) ACC/ X-Page Y-Page LSelects
DREG RA/RB
Write Selects memory ‘Increments
output X'Y/X*G RAM/ROM pointer
CCR CCR C: Set if a carry is generated in fixed point add operation
of digit-adjusted two mantissas.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

94 HITACHI

FADA

II. Direct addressing mode

Assembler
syntax [<label>] AFADAA <operand (B)>[A <comment>]
Example FADA~PA, A, 0, 12
o @ ®
Operation @ ALU operation

Floating point add

® Operand(}
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

OperandCD ALU operation (floating point)
PA P(20 bits)+ACCA(20 bits)>ACCA(20 bits)
YA Y(16 bits)+ACCA(20 bits)-~ACCA(20 bits)
PX P(20 bits)+X(16 bits) ~ACCA(20 bits)
YX Y(16 bits)+X(1l6 bits) ~+ACCA (20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCA appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively;

however, there is a difference in the number of effective bits.

@ Operand @W@
For details of operand @’\z@ , see 5.2.1 'Operand'.
In 'Operand ', "ACC" means ACCA.

Instruction
code

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[oToTololo[[Tofo[[Tofo[[[T [[][]
N/ N \

(X,Y) ACC/ (Page) (Pointer)
+ALU DREG

. direct address
Write

CCR

OVFP

CCR C: Set if a carry is generated in fixed point add operation
of digit-adjusted two mantissas.
N: Set if ACCA is negative after instruction execution.
Z: Set if ACCA is O after instruction execution.

OVFP - OVFP bit of the CTR must be set to 1 beforehand.

HITACHI

95

FADB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFADBA <operand(:)>[A <comment>]

Example

FADB& PA,D,XY (2,3), RA+

e O ®

Operation

® ALU operation
Floating point add

@ Operand @
Operand C)Jndlcates input data of the ALU.

The

content of operandC:)ls shown in the following table.

Operand(:) ALU operation (floating point)

PA P(20 bits)+ACCB(20 bits)=>ACCB(20 bits)

YA Y(16 bits)+ACCB(20 bits)~ACCB(20 bits)

PX P(20 bits)+X(16 bits) +ACCB (20 bits)

YX Y(16 bits)+X(16 bits) *ACCB (20 bits)

P:
X:

Product of previous instruction cycle
X-Bus output Y: Y-Bus output

® Operand @ v @

For

details of operand ()“J C), see 5.2.1 'Operand C)'

In 'Operand (@)', "ACC" means ACCB.

Instruction
code

21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1

ololelo[ol T WL [LT T T T TTTTT

>ALU DREG RA/RB
Write Selects memory -Increments

output X-Y/X-G RAM/ROM

pointer

(X,Y) Acc/ X-Page Y—Page [tSelects

CCR

OVFP

CCR C:

N:
Z:

Set if a carry is generated in fixed point add operation
of digit-adjusted two mantissas.

Set if ACCB is negative after instruction execution.

Set if ACCB is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

96 HITACHI

FADB

II. Direct addressing mode
Assembler [<label>] AFADBA <operand (B)>[A <comment>]
syntax
Example FADBA PA, D, 2, 49
o @ 6
Operation @® ALU operation

Floating point add

@ Operand
Operand indicates input data of the ALU.
The content of operand is shown in the following table.
Operand() ALU operation (floating point)

PA P(20 bits)+ACCB(20 bits)-~ACCB(20 bits)
YA Y(16 bits)+ACCB(20 bits)-ACCB(20 bits)
PX P(20 bits)+X(1l6 bits) ~ACCB(20 bits)
YX Y(16 bits)+X(16 bits) ~+~ACCB (20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCB appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively;
however, there is a difference in the number of effective bits.

® Operand (D’MCD
For details of operand @'\J@, see 5.2.1 'Operand .
In 'Operand ', "ACC" means ACCB.

Instruction
code

2120191817161514131211109876543210
loToTolofo] [Jola[[ofol TTTTITT[T]]
\— ~
(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write

CCR

OVFP

CCR C: Set if a carry is generated in fixed point operation
of digit-adjusted two mantissas.
N: Set if ACCB is negative after instruction execution.
7Z: Set if ACCB is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 97

ADA

I. Pointer addressing mode

Assembler
syntax [<label>] AADAA <operand @)>[A <comment>]
Example

ADA& YA, EE, XG (0,2), RA
[ONNO) ® ®

Operation

@ ALU operation
Fixed point add

® Operand(}
Operand<:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operandc:) ALU operation (fixed point)
PA P(16 bits)+ACCA(16 bits)->ACCA(1l6 bits)
YA Y(16 bits)+ACCA(16 bits)~ACCA(16 bits)
PX P(16 bits)+X(16 bits) ~ACCA(16 bits)
YX Y(16 bits)+X(16 bits) ~+ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

@® Operand @’\J@
For details of Operand @’\z@, see 5.2.1 'Operand@ .
In 'Operand(:)', "ACC" means ACCA.

Instruction

21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

code Lofofofofo[T ilo[T Al [T TTTTTTT]
~_ N—) U
(X,Y) Acc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory - Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if a carry is generated after arithmetic operation.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

98 HITACH!I

ADA

II. Direct addressing mode

Assembler

syntax [<label>] AADAA <operand>[A <comment>]

Example ADA~ YA, EE, 4, 24
0 ® ©

Operation @® ALU operation
Fixed point add

@® Operand @
Operand(:)indicates input data of the ALU.

The content of operand(:>is shown in the following table.

Operandc:) ALU operation (fixed point)

PA P(16 bits)+ACCA(16 bits)+ACCA(16 bits)

YA Y(16 bits)+ACCA(1l6 bits)>ACCA(1l6 bits)

PX P(16 bits)+X(16 bits) —+ACCA(16 bits)

YX Y(16 bits)+X(16 bits) +ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCA appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively.

@ Operand @%@
For details of operand @"4@ , see 5.2.1 'Operand@ .
In 'Operand (B) ', "ACC'" means ACCA.

Instruction

code 12019181716 1514 131211 10 9 8 7 6 5 4 3 2 1 0

IZIOIOIOIOlMIIIIOKUOIOI [TTTTTTL]

(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write

CCR CCR C: Set if a carry is generated after arithmetic operation.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

HITACH!I 99

ADB

I. Pointer addressing mode

Assembler
syntax [<label>] AADBA <operand (A)>[A <comment>]
Example

ADB& YA, EE, XG (1, 3), RaA
® ® ® ®

Operation

@® ALU operation
Fixed point add

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand<:)is shown in the following table.

Operand() ALU operation (fixed point)
PA P(16 bits)+ACCB(16 bits)>ACCB(16 bits)
YA Y(16 bits)+ACCB(16 bits)>ACCB(16 bits)
PX P(16 bits)+X(1l6 bits) ~ACCB(16 bits)
YX Y(16 bits)+X(16 bits) +ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

® Operand@%@
For details of Operand@’\l@ , see 5.2.1 'Operand (A)'.
In 'Operand(:>', "ACC" means ACCB.

Instruction

2120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0

code
Llofofofofo TA[a[TH[T TTTTT]
N/ j— N/ N/
(X,Y) Acc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory -lncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if a carry is generated after arithmetic operation.
y
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

100 HITACHI

ADB

II. Direct addressing mode

Assembler
syntax [<label>] AADBA <operand >[A <comment>]
Example ADB& YA, EE, 4, 22
o ® 6
Operation ® ALU operation

Fixed point add

® Operand @
Operand@indicates input data of the ALU.

The content of operand@is shown in the following table.

0perand® ALU operation (fixed point)
PA P(16 bits)+ACCB(16 bits)->ACCB(16 bits)
YA Y(16 bits)+ACCB(16 bits)~>ACCB(16 bits)
PX P(16 bits)+X(16 bits) +ACCB(16 bits)
YX Y(16 bits)+X(16 bits) ~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCB appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively.

@ Operand @%@
For details of operand @@, see 5.2.1 "operand ®) '.
In 'Operand ', "ACC'" means ACCB.

Instruction
21201918 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

code
lofofolofol T [x[[l TTTTTTT1]

N 7/

(X,Y) Acc/ (Page) (Pointer)

~ALU DREG direct address

Write
CCR CCR C: Set if a carry is generated after arithmetic operation.
N: Set if ACCB is negative after instruction execution.

OVFP 7: Set if ACCB is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

HITACHI 101

FSBA

I. Pointer addressing mode

Assembler
syntax [<label>] AFSBAA <operand<:)>[A <comment>]
Example

FSBA~ PX, EE, XY (3,4), RA
o @ ® ®

Operation

® ALU operation
Floating point subtract

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand@ ALU operation (floating point)
PA P(20 bits)-ACCA(20 bits)~>ACCA(20 bits)
YA Y(16 bits)-ACCA(20 bits)>ACCA(20 bits)
PX P(20 bits)-X(16 bits) ~ACCA(20 bits)
YX Y(16 bits)-X(16 bits) +~ACCA(20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

[J Operand@’b@
For details of operand @’\J@, see 5.2.1 'Operand®'.

In 'Operand@ ', "ACC" means ACCA.
Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
loLofolols] TTofol T LT TTTTTTTT1]
N N N N _/r
(X,Y) ACC/ X-Page Y-Page LSelects
+ALU DREG RA/RB
Write —Selects memory -Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if a borrow is generated in fixed point subtract
operation of digit-adjusted two mantissas.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

102 HITACHI

FSBA

II. Direct addressing mode

Assembler
syntax

[<label>] AFSBAA <operand>[A <comment>]

Example

FSBAS YA, EE, 2, 39
o ® o

Operation

® ALU operation
Floating point subtract

[Operand@
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand(:> ALU operation (floating point)

PA P(20 bits)-ACCA(20 bits)>ACCA(20 bits)

YA Y(16 bits)-ACCA(20 bits)>ACCA(20 bits)

PX P(20 bits)-X(16 bits) +ACCA(20 bits)

YX Y(16 bits)-X(16 bits) +ACCA(20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCA appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively;
however, there is a difference in the number of effective bits.

(] Operand@ '\»@
For details of operand @’\/@ , see 5.2.1 'Operand ',
In 'Operand', "ACC'" means ACCA.

Instruction
code

21 20191817 16 1514 13121110 9 8 7 65 4 3 2 1 0

[oTefo[o[x] T Tofo] [Jo]o] [[TTTITT]]

(X,Y) AcC/ (Page) (Pointer)

~ALU DREG direct address
Write

CCR

OVFP

CCR C: Set if a borrow is generated in fixed point subtract
operation of digit-adjusted two mantissas.
N: Set if ACCA is negative after instruction execution.
7Z: Set if ACCA is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI1 103

FSBB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFSBBA <operand(:)>[A <comment>]

Example

FSBBa

PX, EE, XY(3,0), RA
[OBNO)] ® ®

Operation

@® ALU operation
Floating point subtract

@® Operand @
OperandC:)indicates input data of the ALU.

The

content of operand(:)is shown in the following table.

Operand<:) ALU operation (floating point)

PA P (20 bits)-ACCB(20 bits)~*ACCB(20 bits)

YA Y(16 bits)-ACCB(20 bits)->ACCB(20 bits)

PX P(20 bits)-X(16 bits) ~ACCB(20 bits)

YX Y(16 bits)-X(16 bits) ~+ACCB(20 bits)

P:
X:

Product of previous instruction cycle
X-Bus output Y: Y-Bus output

@ Operand @ Y

For details of operand Q)"v(4), see 5.2.1 "Operand (@) '.
In 'Operand(:>', "ACC" means ACCB.

Instruction
code

21 2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

Lofololofa] | IOIIUJIIITI LT T]]

N

(X,Y) Acc/ X-Page Y-Page Selects

~ALU DREG RA/RB
Write Selects memory L Increments

output X-Y/X-G RAM/ROM
pointer

CCR

OVFP

CCR C: Set if a borrow is generated in fixed point subtract

operation of digit-adjusted two mantissas.

N: Set if ACCB is negative after instruction execution.

Z: Set if ACCB is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

104 HITACHI

FSBB

II. Direct addressing mode

Assembler
syntax [<1label>] AFSBBA <operand>[A <comment>]
Example FSBB& YA, EE, 6, 24
O ® ®
Operation @® ALU operation

Floating point subtract

@® Operand @
OperandC:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand(:> ALU operation (floating point)
PA P(20 bits)-ACCB(20 bits)>ACCB(20 bits)
YA Y (16 bits)-ACCB(20 bits)~>ACCB(20 bits)
PX P(20 bits)-X(16 bits) ~ACCB(20 bits)
YX Y(16 bits)-X(16 bits) ~ACCB(20 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCA appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively;
however, there is a difference in the number of effective bits.

@ Operand @% @
For details of operand(@~(Q), see 5.2.1 'Operand(® .
In 'Operand) ', "ACC" means ACCB.

Instruction 2120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

code oloJofo[a] [Jola[[Tolo[TT[TTITT]]

DN

(X,Y) ACC/ (Page) (Pointer)

~ALU DREG direct address
Write

CCR CCR C: Set if a borrow is generated in fixed point subtract

operation of digit-adjusted two mantissas.

OVFP N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is 0 after instruction execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 105

SBA

I. Pointer addressing mode

Assembler
syntax [<label>] ASBAA <operand®>[A <comment>]
Example

SBAS& YA, EE, XY (0,4), RA, RO

o ® © @

Operation

@ ALU operation
Fixed point subtract

® Operand @
Operand(:>indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand() ALU operation (fixed point)
PA P(16 bits)-ACCA(16 bits)~>ACCA(16 bits)
YA Y(16 bits)-ACCA(1l6 bits)~ACCA(16 bits)
PX P(16 bits)-X(16 bits) ~ACCA(16 bits)
YX Y(16 bits)-X(16 bits) ~ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

® Operand @’\f@
For details of operand @’b@ , see 5.2.1 'Operand@'.
In 'Operand()', ""ACC'" means ACCA.

Instruction

21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

code Lofofoloi[T [a[ol T W[TTTTTTTT]
N/ A——— N
(X,Y) ACC/ X~-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory lIncrements
output X-Y/X:G RAM/ROM
pointer
CCR CCR C: Set if a borrow is generated after arithmetic operation.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

106 HITACHI

SBA

II. Direct addressing mode

Assembler

syntax [<label>] ASBAA <operand >[A <comment>]

Example SBAA YA, EE, 3, 44
o ® ©

Operation @ ALU operation
Fixed point subtruct

@® Operand @
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand() ALU operation (fixed point)

PA P(16 bits)-ACCA(1l6 bits)~>ACCA(l6 bits)

YA Y(16 bits)-ACCA(1l6 bits)>ACCA(16 bits)

PX P(16 bits)-X(1l6 bits) ~ACCA(16 bits)

YX Y(16 bits)-X(16 bits) +ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCA appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively.

® Operand @’\J@
For details of operand @"J@ , see 5.2.1 'Operand .
In 'Operand () ', "ACC" means ACCA.

Instruction
21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2

code BBl T ol T ol T LI LI
___/ N

(X,Y) acc/ (Page) (Pointer)
~ALU DREG direct address
Write

CCR CCR C: Set if a borrow is generated after arithmetic operation.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

HITACHI 107

SBB

I. Pointer addressing mode

Assembler [<label>] ASBBA <operand (@) >[A <comment>]
syntax
Example SBB4 YA, EE, XG(4, 0), RA
o @ 3 €
Operation @® ALU operation

Fixed point subtract

@® Operand @
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

0perand® ALU operation (fixed point)
PA P(16 bits)-ACCB(16 bits)ACCB(16 bits)
YA Y(16 bits)~-ACCB(16 bits)~ACCB(1l6 bits)
PX P(16 bits)-X(16 bits) +ACCB(16 bits)
YX Y(16 bits)-X(16 bits) ~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

@ Operand @’\»@
For details of operand@’b@ , see 5.2.1 "Operand@ '.
In 'Operand@ ', "ACC" means ACCB.

Instruction

code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
(o]
lofoTofo[s][[L[[LI T T [[[]TT]
/ _/) A W
(X,Y) Acc/ X-Page Y-Page Selects
~>ALU DREG RA/RB
Write Selects memory ‘Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if a borrow is generated after arithmetic operation.
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

108 HITACHI

SBB

II. Direct addressing mode

Assembler
syntax [<label>] ASBBA <operand >[A <comment>]
Example

SBBo YA, EE, 6, 22
D ® ©

=2

Operation

@® ALU operation
Fixed point subtruct

@ Operand @
Operand () indicates input data of the ALU.
The content of operand(:)is shown in the following table.

OperandC) ALU operation (fixed point)
PA P(16 bits)-ACCB(16 bits)ACCB(1l6 bits)
YA Y(16 bits)-ACCB(16 bits)~ACCB(1l6 bits)
PX P(16 bits)-X(16 bits) ~+ACCB(16 bits)
YX Y(16 bits)-X(16 bits) ~+ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The contents of ACCB appear also on X-Bus. So the operations
of PA and YA are the same as those of PX and YX respectively.

@® Operand @’\J®
For details of operand @’\J© , see 5.2.1 'Operand ',
In 'Operand (B) ', "ACC" means ACCB.

Instruction
code

21 20 19 18 17 16 1514 131211 10 9 8 7 6 5 4 3 2 1 0

Lofofofoln T Infa[[Jofo [TTTTTTT]
N/ N
(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write

CCR

OVFP

CCR C: Set if a borrow is generated after arithmetic operation.
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is 0 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection
Overflow protection does not affect the status of carry flag.

HITACHI 109

FLDA

I. Pointer addressing mode

Assembler
< > < > < >
syntax [<label>] AFLDAA operand(:) [A <comment>]
Example FLDA~ YA, EE, XY (4, 3), RB
@ @ @
Operation ® ALU operation

Floating point load

® Operand @
Operand (D) indicates input data of the ALU.
The content of operand(@)is shown in the following table.

Operand() ALU operation (floating point)
PA P(20 bits) > ACCA(20 bits)
YA Y(16 bits) - ACCA(20 bits)
PX The same as PA
YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The load data is normalized.

® Operand@%@
For details of operand @’\z@ , see 5.2.1 'Operand@ .
In 'Operand(}', "ACC" means ACCA.

Instruction
21 2019 18 17 16 1514 131211 10 9 8 7 6 5 4 3 2 1 0

code
Lolt[afofol T ofo T Ii[[[T[T T 11]
n_/ o/ /N /
(X,Y) Acc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory LIncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: O
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

110 HITACHI

FLDA

II. Direct addressing mode

Assembler
syntax

[<label>] AFLDAA <operand>[A <comment>]

Example

FLDAS YA, EE, 2, 49
o ® ©

Operation

@® ALU operation
Floating point load

® Operand(D
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand(:) - ALU operation (floating point) .

PA P(20 bits) > ACCA(20 bits)

YA Y(16 bits) - ACCA(20 bits)

PX The same as PA

YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The load data is normalized.

® Operand @ v @
For details of operand()ruCD, see 5.2.1 'Operand @D'.
In 'Operand', "ACC" means ACCA.

Instruction
code

21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

[o[1[xofof [Jofo[T Jofol [L1 IILIT]

(X,Y) Acc/ (Page) (Pointer)
+ALU’ DREG direct address
Write

CCR

OVFP

CCR C: O
N: Set if ACCA is negative after instruction execution.
Z: Set if ACCA is 0 after instruction execution.

HITACHI 111

FLDB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFLDBA <operand (&)>[A <comment>]

Example

FLDB& YA, EE, XY(4, 2), RA+
o ® ® ®

Operation

@® ALU operation
Floating point load

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operand(:) ALU operation (floating point).

PA P(20 bits) > ACCB(20 bits)

YA Y(16 bits) > ACCB(20 bits)

PX The same as PA

YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

The load data is normalized.

@® Operand @’\/@
For details of operand @'\:@ , see 5.2.1 'Operand@ .
In 'OperandCD', "ACC" means ACCB.

Instruction
code

21 2019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0
lolhfofol TJof TIi[[TTTTTTTT]

./ n__/ o AN N/

(X,Y) Acc/ X-Page Y-Page { Selects

~ALU DREG RA/RB
Write Selects memory l‘Increments

output X:Y/X:-G RAM/ROM pointer

CCR

OVFP

CCR C: O
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is 0 after instruction execution.

112 HITACHI

FLDB

Assembler

syntax [<label>] AFLDBA <operand>[A <comment>]
Example FLDB~ YA, EE, 3, 48

Operation @® ALU operation

Floating point load

® Operand @
0perand®indicates input data of the ALU.
The content of operand is shown in the following table.

Operand@ ALU operation (floating point)
PA P(20 bits) - ACCB(20 bits)
YA Y(16 bits) - ACCB(20 bits)
PX The same as PA
YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

[Operand@’\a@
For details of operand ®W®, see 5.2.1 ’Operand .
In 'Operand () ', "ACC" means ACCB.

Instruction
21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

d
coce loln[afofol T Tolal T ol TTTTTTTT]
- —
(X,Y) Acc/ (Page) (Pointer)
~ALU DR?G direct address
Write
CCR CCR C: O
N: Set if ACCB is negative after instruction execution.
OVFP 7: Set if ACCB is 0 after instruction execution.

HITACHI 113

LDA

I. Pointer addressing mode

Assembler
syntax [<label>] ALDAA <operand(:)>[A <comment>]
Example LDAA YA, EE, XY (0, 2), RA
O ® ® ®
Operation ® ALU operation

Fixed point load

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand(:>is shown in the following table.

Operand(:) ALU operation (fixed point)
PA P(16 bits) - ACCA(16 bits)
YA Y(16 bits) > ACCA(16 bits)
PX The same as PA
YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

® Operand@%@
For details of operand@’\z@ , see 5.2.1 '0perand® .
In 'OperandC)', "ACC'" means ACCA.

Instruction

212019181716 1514 13121110 9 8 7 6 5 4 3 2 1 0

code
lofafefofol TTlol [Ta[[T TTTT]]
o/ N/) Y, N N
(X,Y) ACc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory -Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: 0
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

114 HITACHI

LDA

II. Direct addressing mode

Assembler
syntax [<label>] ALDAA <operand (B)>[A <comment>]
Example

LDAAYA,EE, 5,26

©® 06

Operation

@ ALU operation
Fixed point load

@ Operand @
Operand@indicates input data of the ALU.
The content of operand is shown in the following table.

Operand@ ALU operation (fixed point)
PA P(1l6 bits) - ACCA(16 bits)
YA Y(16 bits) - ACCA(16 bits)
PX The same as PA
YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

® Operand@w@
For details of operand@%@ , see 5.2.1 'Operand .
In 'Operand ', "ACC" means ACCA.

Instruction
code 212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
lo[1lxfofo] [[afo[[Tofo[TT[TI1[1]
./ A —
(X,Y) ACC/ (Page) (Pointer)
~ALU DREG direct address
Write
CCR CCR C: O
N: Set if ACCA is negative after instruction execution.
OVFP 7Z: Set if ACCA is 0 after instruction execution.

HITACHI 115

LDB

I. Pointer addressing mode

Assembler
syntax

[<label>] ALDBA <operand(:)>[A <comment>]

Example

LDBA YA, EE, XG(0, 2), RA
® ® ® ®

Operation

® ALU operation
Fixed point load

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operand(:) ALU operation (fixed point)

PA P(16 bits) > ACCB(16 bits)

YA Y(16 bits) ~ ACCB(16 bits)

PX The same as PA

YX The same as YA

P: Product of previous instruction cycle
X: X~-Bus output Y: Y-Bus output

® Operand @ v @
For details of operand()ﬂJCD, see 5.2.1 'OperandCD'.
In 'Operand(:>', "ACC" means ACCB.

Instruction
code

212019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
llsDfofol TR THT T T[T][]
_/ _/ YA

(X,Y) Acc/ X-Page Y-Page Selects
>ALU DREG RA/RB
Write Selects memory - Increments

output X-Y/X-G RAM/ROM
pointer

CCR

OVFP

CCR C: 0
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is 0 after instruction execution.

116 HITACHI

LDB

II. Direct addressing mode

Assembler
syntax [<label>] ALDBA <operand®>[A <comment>]
Example LDBA YX, EE, 2, 44
O ® ©
Operation ® ALU operation

Fixed point load

® Operand @
Operand (1) indicates input data of the ALU.
The content of operand is shown in the following table.

Operand(:) ALU operation (fixed point)
PA P(16 bits) = ACCB(16 bits)
YA Y(16 bits) > ACCB(16 bits)
PX The same as PA
YX The same as YA

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output

@ Operand @’\» @
For details of operand@m® , see 5.2.1 'Operand ',
In 'Operand ', "ACC'" means ACCB.

Instruction
code

2120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
loln[afolol T Tafa[TTofo T TTTTTTT]
N o/
(X,Y) "~ ACC/ (Page) (Pointer)
*ALU DREG - direct address

Write

CCR

OVFP

CCR C: O
N: Set if ACCB is negative after instruction execution.
7Z: Set if ACCB is 0 after instruction execution.

HITACHI117

ANDA

I. Pointer addressing mode

Assembler
syntax

[<label>] AANDAA <operand @>[A <comment>]

Example

ANDA& YX, EE, XY (1, 8), RA
[ORNO) ® O]

Operation

® ALU operation
Logical arithmetic AND

.Operand@
Operand@indicates input data of the ALU.
The content of operand@is shown in the following table.

Operand® ALU operation (fixed point)
PA P(16 bits) A ACCA(16 bits)~>ACCA(16 bits)
YA Y(16 bits) A ACCA(16 bits)->ACCA(l6 bits)
PX P(16 bits) A X(16 bits) ~ACCA(16 bits)
YX Y(16 bits) A X(16 bits) ~+ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
~: Logical product (AND)

@® Operand @%@
For details of operand Qv(®%), see 5.2.1 "Operand (&) '.
In 'Operand (&) ', "ACC" means ACCA.

Instruction

code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
lohlalol Tl TLITTTTTTTTT]
o/ ./ N AN N/
(X,Y) Acc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory -Increments
output X'Y/X-G RAM/ROM
pointer
CCR CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

118 HITACHI

II. Direct addressing mode

ANDA

Assembler
<
syntax [<1label>] AANDAA <operand>[A <comment>]
Example ANDAA YA, EE, 4, 24
o ® o
Operation ® ALU operation
Logical arithmetic AND
® Operand@
0perand®indicates input data of the ALU.
The content of operand@ is shown in the following table.
Operand@ ALU operation (fixed point)
PA P(16 bits)A ACCA(16 bits)~>ACCA(16 bits)
YA Y(16 bits) A ACCA(16 bits)>ACCA(16 bits)
PX P(16 bits)A X(16 bits) ~ACCA(16 bits)
YX Y(16 bits) A X(16 bits) ~ACCA(16 bits)
P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
A: Logical product (AND)
® Operand @%©
For details of operand@’\a@, see 5.2.1 'Operand@'
In 'Operand ', "ACC'" means ACCA.
Instruction
212019 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 0
code
foTola[aJol T o[[Tofol [T TTTITTI]]
N N
(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write
CCR CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

HITACHI 119

ANDB

I. Pointer addressing mode

Assembler
syntax

[<label>] AANDBA <operand@>[A <comment>]

Example

ANDB& YX, EE, XY (1, 6), RA, RO
O ® ® ®

Operation

® ALU operation
Logical arithmetic AND

@ Operand @
0perand®indicates input data of the ALU.

The content of operand@is shown in the following table.

Operand@ ALU operation (fixed point)
PA P(16 bits) A ACCB(16 bits)~ACCB(16 bits)
YA Y(16 bits) A ACCB(16 bits)~>ACCB(16 bits)
PX P(16 bits) A X(16 bits) ~ACCB(16 bits)
YX Y(16 bits) A X(16 bits) +~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
A: Logical product (AND)

@® Operand @’b@
For details of operand@’\z@ , see 5.2.1 'Operand@ '.
In 'Operand @ ', "ACC" means ACCB.

inz:ructlon 21 20191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
o
lofoilafol [TAlf Tl [TTTTTTIT]
n___/ _/ A
(X,Y) Acc/ X-Page Y-Page Selects
+ALU DREG RA/RB
Write Selects memory -Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is 0 after instruction execution.

120 HITACHI

ANDB

II. Direct addressing mode

Assembler
syntax [<label>] AANDBA <operand>[A <comment>]
Example ANDB~ YA, EE, 1, 45
o @ o
Operation ® ALU operation

Logical arithmetic AND

@ Operand @
Operand<:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operand() ALU operation (fixed point)
PA P(16 bits) A ACCB(16 bits)-ACCB(16 bits)
YA Y(16 bits) A ACCB(16 bits)-~ACCB(16 bits)
PX P(16 bits) A X(16 bits) ~ACCB(16 bits)
YX Y(16 bits) A X(16 bits) +~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
A : Logical product (AND)

® Operand @’\4®
For details of operand DVv(®), see 5.2.1 "operand(® '.
In 'Operand(®) ', "ACC'" means ACCB.

Instruction

code 21 2019 1817 161514 13121110 9 8 7 6 5 4 3 2 1 0
lofol1[1fo] [il [Tolo[T TTTTI[1]
~—/ N/ 7/ /
(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write
CCR CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
OVFP 7Z: Set if ACCB is 0 after instruction execution.

HITACHI 121

ORA

I. Pointer addressing mode

Assembler
syntax

[<label>] AORAA <operand @&)>[A <comment>]

Example

ORA& YA, EE, XY (1, 6), RA

U@ &) @

Operation

@® ALU operation
Logical arithmetic OR

@® Operand @
Operand(:)indicates input data of the ALU.
The content of operand(:)is shown in the following table.

Operand() ALU operation (fixed point)
PA P(16 bits)v ACCA(16 bits)~>ACCA(1l6 bits)
YA Y(16 bits)v ACCA(1l6 bits)~ACCA(1l6 bits)
PX P(16 bits)v X(16 bits) —~>ACCA(16 bits)
YX Y(16 bits) v X(16 bits) ~ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
v: Logical sum (OR)

® Operand @%@
For details of operand@fb@ , see 5.2.1 for 'Operand@'.
In 'Operand(}', ""ACC" means ACCA.

Instruction

21 2019 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

code Lofolnfofo T ifol T [T TTTTTTT]
/ / | W
(X,Y) Acc/ X-Page Y-Page Selects
~ALU DREG RA/RB
Write Selects memory -Increments
output X-Y/X.G RAM/ROM
pointer
CCR CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

122 HITACHI

II. Direct addressing mode

ORA

Assembler
syntax

[<label>] AORAA <operand>[A <comment>]

Example

ORA4 YA, EE, 6, 23
o ® o

Operation

@® ALU operation
Logical arithmetic OR

® Operand @
Operand indicates input data of the ALU.
The content of operand(i)is shown in the following table.

Operand() ALU operation (fixed point)

PA P(16 bits) v ACCA(16 bits)>ACCA(16 bits)

YA Y(16 bits) v ACCA(16 bits)~>ACCA(16 bits)

PX P(16 bits)v X(16 bits) ~ACCA(16 bits)

YX Y(16 bits) v X(16 bits) ~ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
v: Logical sum (OR)

® Operand@’\z@)
For details of operand@’\»@ , see 5.2.1 'Operand .
In 'Operand(®) ', "ACC'" means ACCA.

Instruction
code

21 2019 18 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1 0

[ofoli ool T [afof T ool [T[T [[[]]
_/ _/

(X,Y) ACC/ (Page) (Pointer)
*ALU DREG direct address
Write

CCR

OVFP

CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.
Z: Set if ACCA is 0 after instruction execution.

HITACHI 123

ORB

I. Pointer addressing mode

Assembler
syntax

[<label>] AORBA <operand (&) >[A <comment>]

Example

ORB& YA, EE, XY(1,6), RO
o ® ©)] ®

Operation

® ALU operation
Logical arithmetic OR

® Operand @
Operand 1 indicates input data of the ALU.
The content of operand(:)is shown in the following table.

OperandC:) ALU operation (fixed point)

PA P(16 bits) v ACCB(16 bits)~ACCB(16 bits)

YA Y(16 bits) v ACCB(16 bits)~>ACCB(16 bits)

PX P(16 bits) v X(16 bits) +ACCB(16 bits)

YX Y(16 bits)v X(16 bits) +~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
v: Logical sum (OR)

® Operand @’M @
For details of operand @’\J@ , see 5.2.1 'Operand® '.
In 'Operand &) ', "ACC" means ACCB.

Instruction
code

21 20 19 1817 16 1514 131211 10 9 8 7 6 5 4 3 2 1 0

lfoftfofol TTWiT T i TTT T[T T1T L]
7 [S] f
(X,Y) ACC/ X-Page Y-Page Selects
+ALU DREG RA/RB
Write Selects memoryl Increments

output X-Y/X.G RAM/ROM
pointer

CCR

OVFP

CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is 0 after instruction execution.

124 HITACHI

ORB

II. Direct addressing mode

Assembler [<label>] AORBA <operand>[A <comment>]
syntax
Example ORB~ YA, EE, 6, 23
D @ ©
Operation @® ALU operation

Logical arithmetic OR

[J Operand@
Operand(:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operand@ ALU operation (fixed point)
PA P(16 bits)vACCB(16 bits)~ACCB(16 bits)
YA Y(16 bits)vACCB(16 bits)~>ACCB(16 bits)
PX P(16 bits)vX(1l6 bits) —~ACCB(16 bits)
YX Y(16 bits)vX(1lé bits) —~ACCB(1l6 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
v: Logical sum (OR)

[J Operand@’\‘ @
For details of operand@'\z@) , see 5.2.1 'Operand ',
In 'Operand ', "ACC'" means ACCB.

Instruction
code 212019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

lofoliJolo[TTifal T folof T 1] LT ILT]

/

(X,Y) Acc/ (Page) (Pointer)
~ALU DREG direct address
Write
CCR CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is 0 after instruction execution.

HITACHI 125

EORA

I. Pointer addressing mode

Assembler

syntax [<label>] AEORAA <OPERAND (@) >[A <comment>]

o @ ® ®

Example EORAZ YA, EE, XY (2, 7), RA

Operation ® ALU operation
Logical. arithmetic EOR

® Operand (D)
Operand(:)indicates input data of the ALU.
The content of operand is shown in the following table.

Operand(:) ALU operation (fixed point)

PA P(16 bits) @ ACCA(16 bits)>ACCA(16 bits)

YA Y(16 bits) @ ACCA(16 bits)~>ACCA(16 bits)

PX P(16 bits) @ X(16 bits) ~>ACCA(16 bits)

YX Y(16 bits) @ X(16 bits) ~ACCA(1l6 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
@®: Exclusive-OR operation

@ Operand @'\J @
For details of operandCD’bC), see 5.2.1 for 'OperandCD'.
In 'Operand<:)', "ACC" means ACCA.

Instruction
21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

code ololsTolt | T Lol [LI [[T TT[[]]

(X,Y) ACC/ X-Page Y-Page tSeleCts
~ALU DREG RA/RB
Write Selects memory “Increments

output X-Y/X-G RAM/ROM
pointer

CCR CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is 0 after instruction execution.

126 HITACHI

EORA

II. Direct addressing mode

Assembler
syntax [<label>] AEORAA <operand>[A <comment>]

Example EORA~ YA, EE, 3, 39
© ® ©)

Operation ® ALU operation
Logical arithmetic EOR

.Operand@
Operand@indicates input data of the ALU.
The content of operand@is shown in the following table.

Operand@ ALU operation (fixed point)

PA P(16 bits) @ ACCA(16 bits)~>ACCA(1l6 bits)

YA Y(16 bits) @ ACCA(16 bits)>ACCA(16 bits)

PX P(16 bits) ® X(16 bits) ~ACCA(16 bits)

YX Y(16 bits) @ X(16 bits) ~+ACCA(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
®: Exclusive-OR operation

[] Operand@’\/®
For details of Operand@’b@) , see 5.2.1 'Operand'.
In 'Operand@ ', "ACC" means ACCA.

ig;:ru‘:tion 21 20 19 1817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Lofofnfofn] [[ufol [Jofo[[[T T[T[T]]
\ S . /\

J

(X,Y) Acc/ (Page) (Pointer)
~ALU DREG
Write

direct address

CCR CCR C: Undefined.
N: Set if ACCA is negative after instruction execution.

OVFP Z: Set if ACCA is 0 after instruction execution.

HITACHI 127

EORB

I. Pointer addressing mode

Assembler
< > < < >
syntax [<label>] AEORBA <operand @ [A <comment>]
Example

EORB& YA, EE, XY (2,7), RA
(OO} ® ®

Operation

@® ALU operation
Logical arithmetic EOR

® Operand @
Operand(:)indicates input data of the ALU.
The content of operand is shown in the following table.

OperandC) ALU operation (fixed point)
PA P(16 bits) @ ACCB(16 bits)~>ACCB(16 bits)
YA Y(16 bits) @ ACCB(16 bits)+ACCB(16 bits)
PX P(16 bits) @ X(16 bits) —ACCB(16 bits)
YX Y(16 bits) @ X(16 bits) ~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
@: Exclusive-OR operation

[] Operand@’\z@
For details of operand @N@ , see 5.2.1 'Operand@ .
In 'OperandCD', "ACC" means ACCB.

Instruction

21 2019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

code lfolfoi [T TLHITTTTTTTTT]
(X,Y) ACC/ X-Page Y-Page Selects
~ALU DREG [RA/RB
Write Selects memory LIncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is 0 after instruction execution.

128 HITACHI

II. Direct addressing mode

EORB

Assembler
syntax [<label>] AEORBA <operand(B) >[A <comment>]
Example

EORB2 YA, EE, 3, 39
© ® o

Operation

@® ALU operation
Logical arithmetic EOR

@® Operand @
Operand@indicates input data of the ALU.
The content of operand@is shown in the following table.

Operand@ ALU operation (fixed point)
PA P(16 bits) @ ACCB(16 bits)>ACCB(16 bits)
YA Y(16 bits) @ ACCB(16 bits)-ACCB(16 bits)
PX P(16 bits) ® X(16 bits) ~ACCB(16 bits)
X Y(16 bits) @ X(16 bits) ~ACCB(16 bits)

P: Product of previous instruction cycle
X: X-Bus output Y: Y-Bus output
@®: Exclusive-OR operation

[J Operand@’\/@
For details of operand@’\z@, see 5.2.1 'Operand .
In 'Operand(®) ', "ACC" menas ACCB.

Instruction
code

2120191817 161514 131211109 8 7 6 5 4 3 2 1 0
lofolafo[n[[al [Tofol TTTTTTT[]
[| —) \ A\]
(X,Y) ACC/ (Page) (Pointer)
~ALU DREG direct address
Write

CCR

OVFP

CCR C: Undefined.
N: Set if ACCB is negative after instruction execution.
7Z: Set if ACCB is 0 after instruction execution.

HITACHI 129

FABSA

I. Pointer addressing mode

Assembler .
syntax [<label>] AFABSAA <operand(:> [A <comment>]
Example FABSAAEE, XG(1,3), RA
©] ® ®
Operation @® ALU operation

Floating point arithmetic

L|ACCA(20 bits)| > ACCA(20 bits)

The obtained absolute value is stored in the ACCA.

The negative maximum value generates an overflow when the
absolute value is obtained. Therefore the absolute value
is fixed to;

Mantissa $8000 + $7FFF
Exponent +7 - +7
® Operand

For details of operand, see 5.2.1 'Operand@D'.
In 'Operand (C) ', "ACC" means ACCA.

Instruction

code 2120 19 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
loft[ifolifoTofolol T LI T T T [T]]
| — | S
Acc/ X~-Page Y-Page Selects
SREG Selects memory Incggxggis
rite output X-Y/X-G RAM/ROM
pointer
CCR CCR C: O
N: O
OVFP Z: Set if a mantissa of ACCA is $0000.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

130 HITACHI

FABSA

II. Direct addressing mode

Assembler
syntax [<label>] AFABSAA <operand(>>[A <comment>]
Example FABSAAEE, 0,00
®
Operation @® ALU operation
Floating point arithmetic
r|ACCA(20 bits)| - ACCA(20 bits) J
The obtained absolute value is stored in the ACCA.
The negative maximum value generates an overflow when the
absolute value is obtained. Therefore the absolute value
is fixed to;
Mantissa $8000 — S$7FFF
Exponent +7 - +7
@® Operand
For details of operand, see 5.2.1 'Operand<:)'.
In 'Operand() ', "ACC" means ACCA.
Instruction
code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
lo[x[1Jo[tTofoloTo[[Jolo [T T TTIT[]
[
ACC/ (Page) (Pointer)
DR?G direct address
Write
CCR CCR C: O
N: O
OVFP 7+ Set if a mantissa of ACCA is $0000.
OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 131

FABSB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFABSBA <operand(:)>[A <comment>]

Example

FABSBAEE, XG(1,3), RA
® ® ®

Operation

® ALU operation
Floating point arithmetic

[ﬁ |ACCB(20 bits)| + ACCB(20 bits)

The obtained absolute value is stored in the ACCB.

The negative maximum value generates an overflow when the
absolute value is obtained. Therefore the absolute value

is fixed to;

Mantissa $8000 - $7FFF

Exponent +7 > +7
@® Operand

For details of operand, see 5.2.1 'Operand(:D'.
In 'OperandCD', "ACC" means ACCB.

Instruction

code 212019 1817161514 1312 1110 9 8 7 6 5 4 3 2 1 0
Loftffolufofofo i Tl T T T T T[]
| — |) Y —— Selects
ACC/ X-Page Y-Page L_ RA/RB
DREG Selects memory — Increments
Write output X-Y/X-G RAM/ROM
pointer
CCR CCR C: 0
N: O
OVFP Z: Set if a mantissa of ACCB is $0000.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

132 HITACHI

FABSB

II. Direct addressing mode

Assembler [<label>] AFABSBA <operand (D)>[A <comment>]
syntax
Example FABSBAEE, 0,00
® ©
Operation @® ALU operation

Floating point arithmetic

[|ACCB(20 bits)| ~ ACCB(20 bits) J

The obtained absolute value is stored in the ACCB.

The negative maximum value generates an overflow when the
absolute value is obtained. Therefore the absolute value
is fixed to;

Mantissa $8000 - S$7FFF
Exponent +7 > +7
® Operand

For details of operand, see 5.2.1 'Operand(:)'.
In ‘Operand(:)', "ACC" means ACCB.

Instruction

code 2120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
lofe[efoaTofofoi] [Jofe[[TTTTTTT]
» (—
Acc/ (Page) (Pointer)
DREG]
Write direct address
CCR CCR C: O
N: O
OVFP 7Z: Set if a mantissa of ACCB is $0000.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 133

ABSA

I. Pointer addressing mode

Assembler
syntax [<label>] AABSAA <operand(:>>[A <comment>]
Example ABSA4>EE,XG(1,3>,EA
® ® ®
Operation ® ALU operation

Fixed point arithmetic

L [ACCA(16 bits)| - ACCA(16 bits) j

The obtained absolute value is stored in the ACCA.
The exponent part (4 bits) of the result is undefined.

@® Operand
For details of operand, see 5.2.1 "OperandCD'.
In 'Operand()', ""ACC'" means ACCA.

Instruction

code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
Clfolafofol il T [T T T T [[[]]
Selects
Acc/ X-Page Y-Page RA/RB
D
wsige Selects memory — Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: 0
N: Set if ACCA=$8000 before arithmetic operation and
OVFP OVFP bit is 0 ; cleared otherwise.

Z: Set if ACCA=$0000.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

134 HITACHI

ABSA

II. Direct addressing mode

Assembler
syntax [<label>] AABSAA <operand<)>[A <comment>]
Example ABSA~A, 2,14
® ®
Operation @® ALU operation
Fixed point arithmetic
(|ACCA(16 bits)| = ACCA(16 bits)]
The obtained absolute value is stored in the ACCA.
The exponent part (4 bits) of the result is undefined.
@® Operand
For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand (D) ', "ACC" means ACCA.
Instruction
code 21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[o[11 o tfofofxfo T Jofofl [TTTTTTT]
7/
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: O
N: Set if ACCA=$8000 before arithmetic operation and
OVFP OVFP bit is 0 ; cleared otherwise.
Z: Set if ACCA=$0000.
OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

HITACHI 135

ABSB

I. Pointer addressing mode

Assembler
syntax [<label>] AABSBA <operand(:>>[A <comment>]
Example ABSBAEE, XG(1,3), RA
® ® ®
Operation @ ALU operation
Fixed point arithmetic
|ACCB(16 bits)| + ACCB(16 bits)
The obtained absolute value is stored in the ACCB.
The exponent part (4 bits) of the result is undefined.
@ Operand
For details of operand, see 5.2.1 "OperandC) '.
In 'Operand (©) ', "ACC'" means ACCB.
Instruction
code 21 20191817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Lofefufolufofon[[[To[[T TTTTT]]
-/ Y W A — Selects
Acc/ X-Page Y-Page RA/RB
DREG Selects memory —Increments
Write output X-Y/X-G RAM/ROM
pointer
CCR CCR C: O
N: Set if ACCB=$8000 before arithmetic operation and
OVFP OVFP bit is 0 ; cleared otherwise.
Z: Set if ACCB=$0000.
OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

136 HITACHI

II. Direct

addressing mode

ABSB

Assembler
syntax

[<label>] AABSBA <operandC) >[A <comment>]

Example

ABSBAA, 2,14

® @

Operation

® ALU operation
Fixed point arithmetic

|ACCB(16 bits)| - ACCB(16 bits)

The obtained absolute value is stored in the ACCB.
The exponent part (4 bits) of the result is undefined.

@® Operand

For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand (D) ', "ACC" means ACCB.

Instruction
code

21 2019 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1

0 .
foleefolafofoax] TTofol TTTTTTT T[]
N—]
ACC/ (Page) (Pointer)
DR?G direct address
Write
CCR CCR C: O
N: Set if ACCB=$8000 before arithmetic operation and
OVFP OVFP bit is 0 ; cleared otherwise.
Z: Set if ACCB=$0000.

OVFP Overflow protection is controlled by the status of OVFP bit.
0:

no overflow protection 1: overflow protection

HITACHI 137

FRPTA

I. Pointer addressing mode

Assembler
syntax [<label>] AFRPTAA <operand(:>>[A <comment>]
Example FRPTAA EE, XG(0,1) , RA
® ® @
Operation Repeat instruction
® The FRPTA instruction repeats the operation of the next instruction)
® Instruction operands are effective.
Floating point multiplication.
@® Repeat count is specified bv. the RC.
The actual repeat count is one more than the value loaded into
the RC. RC value is selectable from 0 to 63.
® 1f an address pointer is incremented depending on operand ().
the RC is autodecremented simultaneously, which decreases the
number of repeat time by 1.
® If an address pointer is incremented in the next instruction,
the operation is terminated resulting in RC=63 (all '1').
No incrementing results in RC=0.
® This instruction can repeat only ALU operation instructions in
pointer addressing mode.
® Any interrupts cannot be accepted during the execution of this
repeat instruction or of the next instruction.
(Interrupt wait state)
For details of operand, see 5.2.1 'Operand(:>'.
In 'Operand(:>', "ACC" means ACCA.
Example (product sum operation)
RC=3 (The RC must be loaded with a value)
FRPTAAEE,XY(0,1) ,RA+ 5 starting operation
Repeat starting multiplication
instruc- RC decrement
tion FADAAAPA,EE,XY(0,1) ,RA+ ; addition
RC decrement
At the completion of execution, the RC value
is 63 (all '1").
equivalent FNOPAAEE,XY (0,1) ,RA+
instruc- FADAAAPA,EE,XY(0,1) ,RA+
tion FADAAAPA ,EE,XY(0,1) ,RA+ three times
FADAAAPA,EE,XY(0,1) ,RA+
Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
Liffafafofofofofo[T T i [T [T T[]
N Y _JI;
/ X-Page Y-Page Selects
ACCG g g RA/RB
DRE Selects memory — Increments
Write output X-Y/X-G RAM/ROM
pointer
CCR CCR C:
N: not affected
OVFP Z:

138 HITACHI

FRPTA

IT. Direct addressing mode

Assembler
syntax [<label>] AFRPTAA <operand(:>>[A <comment>]
Example FRPTAA~A, 2,14
@ ®
Operation Repeat instruction
@® The FRPTA instruction repeats the operation of the next
instruction.
@ Repeat count is specified by the RC.
The actual repeat count is one more than the value loaded
into the RC.
® The other operations are the same as ones in pointer addressing
mode.
For details of operand, see 5.2.1 'Operand() .
In 'Operand @) ', "ACC" means ACCA.
Example
Repeat RC=3 (The RC must be loaded with a value)
instruction FRPTAAEE, 0,00 ;starting operation
FADAAAYA,EE,XY(0,0) ,RA+;addition
RC decrement
FNOPAAEE, 0,00 ;ineffective instruction
Equivalent FADAAAYA,EE,XY(0,0) ,RA+
instruction FADAAAYA,EE,XY (0,0) ,RA+ four times
FADAAAYA,EE,XY (0,0) ,RA+
FADAAAYA,EE,XY(0,0) ,RA+
Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
Lifr[t]1]ofofoJofo] [fofof [[[[[[][]
_J A
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C:
N: not affected
OVFP Z:

HITACHI 139

FRPTB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFRPTBA <operand(:)>[A <comment>]

Example

FRPTBAEE, XG(0,2), RA
@ ® @

Operation

Repeat instruction

@® The FRPTB instruction repeats the operation of the next
instruction.

@® Instruction operands are effective.
Floating point multiplication.

@ Repeat count is specified by the RC.

The actual repeat count is one more than the value loaded into
the RC. RC value is selectable from 0 to 63.

@® If an address pointer is incremented depending on operand C),
the RC is autodecremented simultaneously, which decreases the
number of repeat time by 1.

® If an address pointer is incremented in the next instruction,
the operation is terminated resulting in RC=63 (all '1'").

No incrementing results in RC=0.

® This instruction can repeat only ALU operation instructions in

pointer addressing mode.

® Any interrupts cannot be accepted during the execution of this
repeat instruction or of the next instruction.
(Interrupt wait state)

For details of operand, see 5.2.1 'Operand (©)'.
In 'Operand (©) ', "ACC" means ACCB.

Example (product sum operation)

RC=3 (The RC must be loaded with a value)
Repeat FRPTAAEE,XY(0,1) ,RA+ ; starting operation
instruction starting multiplication
RC decrement
FADAAAPA,EE,XY(0,1) ,RA+; addition
RC decrement
At the completion of execution, the RC value is
63 (all '1").
Equivalent FNOPAAEE,XY(0,1) ,RA+
instruction FADAAAPA,EE,XY(0,1) ,RA+
FADAAAPA,EE,XY(0,1) ,RA+ three times
FADAAAPA,EE,XY(0,1) ,RA+

.on

Instruction
code

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

CCR

OVFP

liffafofofoloni [T [TTTTTTTT]
bt N Selects
Acc/ X-Page Y-Page RA/RB
3R$S Selects memory — Increments
rite output X-Y/X-G RAM/ROM
pointer
CCR C:
N: not affected
Z:

140 HITACHY)

FRPTB

II. Direct addressing mode

Assembler
syntax [<label>] AFRPTBA <operand(:)>[A <comment>]
Example FRPTBAA, 2,14
@ @
Operation Repeat instruction

@® The FRPTB instruction repeats the operation of the next
instruction.

® Repeat count is specified by the RC.
The actual repeat count is one more than the value loaded into
the RC.

® The other operations are the same as ones in pointer addressing
mode.

For details of operand, see 5.2.1 'OperandCD.
In 'Operand()', "ACC" means ACCB.

Example
Repeat RC=3 (The RC must be loaded with a value)
instruction FRPTBAEE, 0,00 ;starting operation
FADBAAYA,EE,XY(0,0) ,RA+;addition
RC decrement
FNOPBAEE, 0,00 sineffective instruction
Equivalent FADBAAYA,EE,XY(0,0) ,RA+
instruction FADBAAYA,EE,XY(0,0) ,RA+ [0 o
FADBAAYA,EE,XY(0,0) ,RA+
FADBAAYA,EE,XY(0,0) ,RA+

Instruction
code

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

(lafafrfofofofoli] TJofo TTTTTITTT]

ACC/ (Page) (Pointer)
DR?G direct address
Write
CCR CCR C:
N: not affected
OVFP Z:

HITACHI 141

RPTA

I. Pointer addressing mode

Assembler
syntax

[<label>] ARPTAA <operand(:)>[A <comment>]

Example

RRPTAAEE,XG(2,3) ,RA+
@ @ @

Operation

Repeat instruction

® The RPTA instruction repeats the operation of the next instruction.
® Instruction operands are effective.
Fixed point multiplication.

® Repeat count is specified by the RC.
The actual repeat count is one more than the value loaded into
the RC. RC value is selectable from 0 to 63.

® If an address pointer is incremented depending on operand (),
the RC is autodecremented simultaneously, which decreases the
number of repeat time by 1.

@® If an address pointer is incremented in the next instruction,
the operation is terminated resulting in RC=63 (all 'l').
No incrementing results in RC=0.

® This instruction can repeat only ALU operation instructions in
pointer addressing mode.

@® Any interrupts cannot be accepted during the execution of this
repeat instruction or of the next instruction.
(Interrupt wait state)

For details of operand, see 5.2.1 'Operand(:D'.
In 'Operand (©)', "ACC" means ACCA.

Example (product sum operation)

RC=3 (The RC must be loaded with a value)
RPTAAEE,XY(0,1) ,RA+ ; starting operation
starting multiplication
RC decrement
;5 addition
RC decrement
At the completion of execution, the RC value is
63 (all '1").

Repeat
instruction

ADAAAPA,EE,XY (0,1) ,RA+

Equivalent NOPAAEE,XY(0,1) ,RA+
instruction ADAAAPA ,EE,XY(0,1) ,RA+
ADAAAPAL,EE,XY(0,1) ,RA+ } three times
ADAAAPA,EE,XY (0,1) ,RA+
Instruction
code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
Llffofofolafol [R TTTTTTTTT]
: R e tASelects
ACC/ X-Page Y-Page RA/RB
DREG Selects memory L_Increments
Write output X-Y/X-G RAM/ROM
pointer
CCR CCR C:
N: not affected
OVFP Z:

142 HITACHI

RPTA

II. Direct addressing mode

Assembler
syntax

[<label>] ARPTAA <operand(§)>[A <comment>]

Example

RPTASA, 2,14
® ®

Operation

Repeat instruction
@® The RPTA instruction repeats the operation of the next
instruction.

® Repeat count is specified by the RC.
The actual repeat count is one more than the value loaded
into the RC.

® The other operations are the same as ones in pointer addressing
mode.

For details of operand, see 5.2.1 'Operand()'
In 'OperandCD', "ACC" means ACCA.

Example
Repeat RC=3 (The RC must be loaded with a value)
instruction RPTAAEE, 0,00 ; starting operation
ADAAAYA,EE,XY(0,0),RA+ ; addition
RC decrement
NOPAAEE, 0,00 ; ineffective instruction
Equivalent ADAAAYA,EE,XY(0,0) ,RAT
instruction ADAAAYAL,EE,XY(0,0) ,RA+ four times
ADAAAYA,EE,XY(0,0) ,RA+) .
ADAAAYA,EE,XY(0,0) ,RA+

Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[iat[1oJo o]t o] | IOIOJ [T
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C:
N: not affected
OVFP Z:

HITACHI 143

RPTB

I. Pointer addressing mode

Assembler

syntax [<label>] ARPTBA <operand (C)>[A <comment>]

Example RPTBAEE, XG(1,3), RA
® ® O]

Operation Repeat instruction

@® The RPTB instruction repeats the operation of the next instruction.
@ Instruction operands are effective.
Fixed point multiplication.

® Repeat count is specified by the RC.

The actual repeat count is one more than the value loaded into
the RC. RC value is selectable from 0 to 63.

@® If an address pointer is incremented depending on operand(:D,
the RC is autodecremented simultaneously, which decreases the
number of repeat time by 1.

@® If an address pointer is incremented in the next instruction,
the operation is terminated resulting in RC=63 (all '1').

No incrementing results in RC=0.

® This instruction can repeat only ALU operation instructions

in pointer addressing mode.

@® Any interrupts cannot be ajcepted during the execution of this
repeat instruction or of the next instruction.
(Interrupt wait state)

For details of operand, see 5.2.1 'Operand C)'.
In 'Operand(:)', "ACC" means ACCB.

Example (product sum operation)

RC=3 (The RC must be loaded with a value)
Repeat RPTBAEE,XY(0,1) ,RA+ ; starting operation
instruction starting multiplication
RC decrement
;5 addition
RC decrement
At the completion of execution, the RC value is
63 (all '1'").

Equivalent NOPBAEE,XY(0,1) ,RA+

instruction ADBAAPA,EE,XY(0,1) ,RA+
ADBAAPA,EE,XY(O,l),RA+} three times

ADBAAPA,EE, XY (0,1) ,RA+

ADBAAPA,EE, XY (0,1) ,RA+

Instruction
code 21 2019 181716 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

EEnNCOCHSEERERREERER
Acc/ X-Page Y_Pag;_{”J Selects

RA/RB

DR?G Selects memory '—Increments
Write output X.Y/X.G RAM/ROM
pointer

CCR CCR C:

N: } not affected
OVFP Z:

144 HITACHI .

RPTB

II. Direct addressing mode

Assembler
syntax

[<label>] ARPTBA <operand(:)>[A <comment>]

Example

RPTBAA, 2,14
@ ®

Operation

Repeat instruction

® The RPTB instruction repeats the operation of the next
instruction.

® Repeat count is specified by the RC.
The actual repeat count is one more than the value loaded

into the RC.

@® The other operations are the same as ones in pointer addressing
mode.

For details of operand, see 5.2.1 'Operand()'.
In 'Operand()', "ACC" means ACCB.

Example (bit manipulation)

Repeat RC=3 (The RC must be loaded with a value)
instruction RPTBAEE, 0,00 ; starting operation
SLBAAEE,XY(0,0) ,RA ; addition
RC decrement
The contents of ACCB is shifted left 4 bits.
NOPBAEE, 0,00 ; ineffective instruction
Equivalent SLBAAEE,XY(0,0) ,RA
instruction SLBAAEE,XY(0,0) ,RA four times
SLBAAEE,XY(0,0) ,RA
SLBAAEE,XY(0,0) ,RA

Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
Cfafafefofofo[x[a] [Jofol T [[[][]]]
N
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C:
N: } not affected
OVFP Z:

HITACHI 145

FNEGA

I. Pointer addressing mode

Assembler
< > <
syntax [<label>] AFNEGAA <operand(:) [A <comment>]
Example

FNEGAAEE,XG(1,3), RA
@ ® @

Operation

® ALU operation
Floating point arithmetic

[7 -ACCA(20 bits) - ACCA(20 bits)]

A two's complement of ACCA is stored in the ACCA.

An overflow occurs when the mantissa and exponent of ACCA are
$8000 and $7 respectively before this instruction is executed.

® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand (©)', "ACC" means ACCA.

Instruction

21 2019 1817 16 1514 131211 10 9 8 7 6 5 4 3 2 1 0

code
[o[x[oLofoTo Tt ofo] [[t[[[[[[T]]T]
N AT A
Selects
Acc/ X-Page Y-Page RA/RB
DREG Selects memory “— Increments
Write output X.Y/X-G RAM/ROM
pointer
CCR CCR C: Set if a mantissa of ACCA is $0000 before instruction
execution; cleared otherwise.
OVFP N: Set if ACCA is negative after instruction execution.

N

Set if a mantissa of ACCA is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

146 HITACHI

FNEGA

II. Direct addressing mode

Assembler
syntax [<label>] AFNEGAA <operand (D)>[A <comment>]
Example FNEGA 4 EE, 0,00
® O
Operation @® ALU operation
Floating point arithmetic
| -ACCA(20 bits) - ACCA(20 bits) 4:]
A two's complement of ACCA is stored in the ACCA.
An overflow occurs when the mantissa and exponent of ACCA are
$8000 and $7 respectively before this instruction is executed.
@® Operand
For details of operand, see 5.2.1 'OperandCD'.
In 'OperandCD', "ACC" means ACCA.
Instruction
code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[o[1]oToJoJo 1 ofo[[Tofo[[[[[[[1]]
N—; x
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Set if a mantissa of ACCA is $0000 before instruction
execution; cleared otherwise.
OVFP Set if ACCA is negative after instruction execution.

N =z

Set if a mantissa of ACCA is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 147

FNEGB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFNEGBA <operand(:)>[A <comment>]

Example

FNEGBAEE, XG(1,3), Ra
® ® @

Operation

@® ALU operation
Floating point arithmetic

-ACCB(20 bits) - ACCB(20 bits)

A two's complement of ACCB is stored in the ACCB.

An overflow occurs when the mantissa and exponent of ACCB are
$8000 and $7 respectively before this instruction is executed.

@ Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'OperandC)', "ACC" means ACCB.

Instruction
code

21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Loftfofofofolnfofal [[x] [[[[TT]TT]

\ / x 7

Selects
Acc/ X-Page Y-Page RA/RB
DREG Selects memory “—Increments

Write output X-Y/X-G RAM/ROM
pointer

CCR

OVFP

CCR C: Set if a mantissa of ACCB is $0000 before instruction
execution; cleared otherwise.
N: Set if ACCB is negative after instruction execution.
Z: Set if a mantissa of ACCB is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

148 HITACHI

FNEGB

II. Direct addressing mode
Assembler
syntax [<label>] AFNEGBA <operand (D) >[A <comment>]
Example FNEGB~A, 2,14
® O
Operation @® ALU operation

Floating point arithmetic

[~ACCB(20 bits) - ACCB(20 bits)

A two's complement of ACCB is stored in the ACCB.

An overflow occurs when the mantissa and exponent of ACCB are
$8000 and $7 respectively before this instruction is executed.

® Operand
For details of operand, see 5.2.1 'OperandCD
In 'Operand() "ACC" means ACCB.

Instruction
code

21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

lol1Jofofololalo[a] T Tofo T [T T T TT]
N/ /
ACC/ (Page) (Pointer)
DREG

X direct address
Write

CCR

OVFP

CCR C: Set if a mantissa of ACCB is $0000 before instruction
execution; cleared otherwise.
N: Set if ACCB is negative after instruction execution.
Z: Set if a mantissa of ACCB is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 149

NEGA

I. Pointer addressing mode

Assembler
< >[A <
syntax [<label>] ANEGAA operand(@) [A <comment>]
Example NEGAAEE,XG(I,S)_Eé

® ® O]

Operation

® ALU operation
Fixed point arithmetic

-ACCA(16 bits) ~ ACCA(16 bits) —I

A two's complement of ACCA is stored in the ACCA.

An overflow occurs when the contents of ACCA is $8000 before
this instruction is executed.

® Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'Operand(:>', ""ACC" means ACCA.

Tnstruction
code

21 2019 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

loftfofofofofufafo T o[[[T TTTTTT]
N | N L—Se_;cts
Acc/ X-Page Y-Page [_ RA/RB
DRFG Selects memory'— Increments
Write output X:Y/X-G RAM/ROM
pointer
CCR CCR C: Set if ACCA is $0000 before instruction execution;
cleared otherwise.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

150 HITACHI

NEGA

IT. Direct addressing mode

Assembler
syntax

[<label>] ANEGAA <operand(:)>[A <comment>]

Example

NEGAAEE, 0,00
® 6

Operation

@® ALU operation
Fixed point arithmetic

[7 -ACCA(16 bits) - ACCA(16 bits)

A two's complement of ACCA is stored in the ACCA.

An overflow occurs when the contents of ACCA is $8000 before
this instruction is executed.

® Operand
For details of operand, see 5.2.1 'Operand() '.
In 'Operand(}', "ACC" meand ACCA.

Instruction
code

120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

(ol +JoTo o[ons[s[o[[Joo[[[[[TTTT]

ACC/ (Page) (Pointer)

DREG direct address
Write

CCR

OVFP

CCR C: Set if ACCA is $0000 before instruction execution;
cleared otherwise.
N: Set if ACCA is negative after instruction execution.
Z: Set if ACCA is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection.

HITACHI 151

NEGB

I. Pointer addressing mode

Assembler
syntax [<label>] ANEGBA <operand C>>[A <comment>]
Example NEGB~EE, XG(1,3), RA

® ® O]

Operation

@ ALU operation
Fixed point arithmetic

-ACCB(16 bits) = ACCB(16 bits)

A two's complement of ACCB is stored in the ACCB.

An overflow occurs when the content of ACCB is $8000 before
this instruction is executed.

® Operand
For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand C) ', "ACC" means ACCB.

Instruction
code 212019181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
Loftfofofofoi[x i [T N[[T T T[T [TT]]
b Selects
ACC/ X-Page Y-Page
DREG RA/RB
Write Selects memory — Increments
output X-Y/X-G - RAM/ROM
pointer
CCR CCR C: Set if ACCB is $0000 before instruction execution;
cleared otherwise.
OVFP

N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

152 HITACHI

NEGB

II. Direct addressing mode

Assembler
< >
syntax [<label>] ANEGBA <operand (D)>[A <comment>]
Example

NEGB2~A, 2,14
® ®

Operation

@® ALU operation
Fixed point arithmetic

[—ACCB(16 bits) ~ ACCB(16 bits) —l

A two's complement of ACCB is stored in the ACCB.

An overflow occurs when the contents of ACCB is $8000 before
the instruction is executed.

® Operand
For details of operand, see 5.2.1 'Operand (D)'.
In 'Operand(D) ', "ACC" means ACCB.

Instruction
code 212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[oftTofofofon[a[n] T Jofo] T [[[[[]]]
\ / J
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Set if ACCB is $0000 before instruction execution;
cleared otherwise.
OVFP

N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

HITACHI1 153

I.

NCA

Pointer addressing mode

Assembler
syntax

[<label>] AINCAA <0perand(:>>[A <c0mmént>]

Example

INCA~EE, XY (0,0), RA
@ ® @

Operation

® ALU operation
Fixed point arithmetic

(ACCA)+1 ~> ACCA
(16 bits) (16 bits)

The contents of ACCA is dealt in the binary representation.
The value of the exponent is undefined.

® Operand
For details of operand, see 5.2.1 'Operand(:)'.

In 'Operand(:D', "ACC" means ACCA.

Instruction
code

120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0

2
fofaTololtToloufol [T [T T [TT][]]
R N E— L selects
ACc/ X-Page Y-Page RA/RB
DR]?G Selects memory —Increments
Write output X.-Y/X.-G RAM/ROM

pointer

CCR

OVFP

CCR C: Set if ACCA is SFFFF before instruction execution;

cleared otherwise.
N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is SFFFF after instruction execution.

154 HITACHI

II. Direct addressing mode

INCA

Assembler
syntax

[<label>] AINCAA <0perand()>[A <comment>]

Example

INCA~EE, 0,00
® ©

Operation

® ALU operation
Increment based on fixed point arithmetic

(ACCA)+1 ~ ACCA
(16 bits) (16 bits)

The contents of ACCA is dealt in the binary representation.

The value of the exponent is undefined.

® Operand
For details of operand, see 5.2.1 'OperandCD'
In 'Operand (D) ', "ACC'" means ACCA.

Instruction
code

12019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

[OI11010|1|0|0I1|0|L10|0| HENEEEEE

ACC/ (Page) (Pointer)
DREG
Write

direct address

CCR

OVFP

CCR C: Set if ACCA is S$FFFF before instruction execution;
cleared otherwise.

Set if ACCA is negative after instruction execution.
Set if ACCA is SFFFF after instruction execution.

N =

HITACHI 155

INCB

I. Pointer addressing mode

Assembler
< < <
syntax [<label>] AINCBA <operand (©)>[A <comment>]
Example INCB AEE, XY (0,0), RA
® ® @
Operation @ ALU operation

Increment based on fixed point arithmetic

ACCB
(16 bits)

(ACCB)+1 ~
(16 bits)

The contents of ACCB is dealt in the binary representation.
The value of the exponent is undefined.

@® Operand
For details of operand, see 5.2.1 ’Operand()'.
In 'Operand()', "ACC" means ACCB.

Instruction

code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
loftfofofufofo [t i [T [[T T[T [] IL}
Acc/ X-Page Y-Page Ei}g;ts
8RFS —Selects memory — Increments
rite output X-Y/X-G RAM/ROM
pointer

CCR

OVFP

Set if ACCB is S$FFFF before instruction execution;
cleared otherwise.

N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is SFFFF after instruction execution.

CCR C:

156 HITACHI

INCB

II. Direct addressing mode
Assembler
syntax [<label>] AINCBA <operand(:)>[A <comment>]
Example

INCBAEE, 0,00

@ @

Operation

@® ALU operation
Increment based on fixed point arithmetic

(ACCB)+1 > ACCB
(16 bits) (16 bits)

The contents of ACCB is dealt in the binary representation.
The value of the exponent is undefined.

@ Operand
For details of operand, see 5.2.1 'Operand() .
In 'OperandC:)', "ACC'" means ACCB.

Instruction
code

212019 1817 161514 1312 1110 9 8 7 6 5 4 3 2 1 0
[ofafofo i ofon[al [Jofof T TTTTT[1]
(-

ACC/ (Page) (Pointer)
D

RFG direct address
Write

CCR

OVFP

CCR C: Set if ACCB is $FFFF before instruction execution;
cleared otherwise.
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is SFFFF after instruction execution.

HITACHI 157

DECA

I. Pointer addressing mode

Assembler
< >[A <
syntax [<label>] ADECAA <operand (©)>[4 <comment>]
Example

DECAAEE, XY (0,0), RA
[©) ® @

Operation

® ALU operation
Decrement based on fixed point arithmetic

(ACCA)-1 - ACCA
(16 bits) (16 bits)

The contents of ACCA is dealt in the binary representation.
The value of the exponent is undefined.

&® Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'Operand()', "ACC" means ACCA.

Instruction

code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
ofo[rfafofosfol T T T TT T[]
oI
Selects
ACC/ X-Page Y-Page t‘ RA/RB
BRgf Selects memory —Increments
rite output X-Y/X.G RAM/ROM
pointer
CCR CCR C: Set if ACCA is not $0000 before instruction execution;
cleared otherwise.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is $0000 after instruction execution.

158 HITACHI

DECA

II. Direct addressing mode

Assembler
syntax [<label>] ADECAA <operand(:)>[A <comment>]
Example DECAAEE, 0,00
® ®
Operation ® ALU operation

Decrement based on fixed point arithmetic

(ACCA) -1 -+ ACCA
(16 bits) (16 bits)

The contents of ACCA is dealt in the binary representation.
The value of the exponent is undefined.

® Operand
For details of operand, see 5.2.1 'Operand(j
In 'Operand (D) ', "ACC" means ACCA.
Instruction
code 21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3
OOLLTOl o Lo [T TITIT]
N
ACC/ (Page) (Pointer)
DREG X
Write direct address
CCR CCR C: Set if ACCA is not $0000 before instruction execution;

cleared otherwise.
Set if ACCA is negative after instruction execution.
Set if ACCA is $0000 after instruction execution.

OVFP

N =z

HITACHI 159

DECB

I. Pointer addressing mode

Assembler
<
syntax [<label>] ADECBA <operand(:)>[A <comment>]
Example DECB AEE, XY (0,0) , RA
©] ® ®
Operation @® ALU operation
Decrement based on fixed point arithmetic
(ACCB)-1 > ACCB
(16 bits) (16 bits)
The contents of ACCB is dealt in the binary representation.
The value of the exponent is undefined.
® Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'Operand(:)', "ACC" means ACCB.
Instruction
code 2120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
lofoliafofo i [T W[T TTTTT1]]
— /P AT [}
Selects
AcCc/ X-Page Y-Page
RA/RB
DREG
Wri Selects memory '—Increments
rite output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if ACCB is not $0000 before instruction execution;
cleared otherwise.
OVFP N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is $0000 after instruction execution.

160 HITACHI

DECB

II. Direct addressing mode

Assembler < S1 A
syntax [<label>] ADECBA <operand(:)>[A <comment>]
Example DECB~EE, 0,00
® ®
Operation @® ALU operation

Decrement based on fixed point arithmetic

(ACCB)-1 > ACCB
(16 bits) (16 bits)

The contents of ACCB is dealt in the binary representation.
The value of the exponent is undefined.

@® Operand
For details of operand, see 5.2.1 ’OperandCD'.
In 'Operand() ', "ACC'" means ACCB.

Instruction

code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
ofolnn[afofoa[a [Jofol TT[TTTI1]
N
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Set if ACCB is not $0000 before instruction execution;

cleared otherwise.
Set if ACCB is negative after instruction execution.

OVFP
: Set if ACCB is $0000 after instruction execution.

N =

HITACHI 161

SRA

I. Pointer

addressing mode

Assembler
syntax [<label>]ASRAA <operand (C)>[A <comment>]
Example SRASA,XY(2,4),RA
® @ ®
Operation ® ALU operation

The contents of ACCA is shifted right 1 bit

® Operand

For details of operand, see 5.2.1 'Operand()'.
In 'Operand(D', ""ACC'" means ACCA.

® Example of n bits shift

LIRC 6
RPTA EE,0,00
SRA EE,XY(0,0),RA

5 Repeat count n=(6+1)
;5 Repeat instruction
5 Shift right 7 bits

Instruction 21 2019181716 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
code lofifofiJofofo[ifo[TTh[T TTTTTTTI]]
7/) W [
Acc/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory'—Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if the value of LSB is 1 before instruction execution.
N: Set if ACCA is negative after instruction execution.
OVFP Z:

Set if ACCA is $0000 after instruction execution.

162 HITACHI

SRA

II. Direct addressing mode
Assembler
syntax [<label>] ASRAA <operand(:)>[A <comment>]
Example

SRAAEE, 0, 00
® ®

Operation

@® ALU operation
The contents of ACCA is shifted right 1 bit.

;

® Operand
For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand<> ', "ACC'" means ACCA.

Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
oftfo[+[ofofo[to[T Jofol [TTTTT[1]]
\ / \
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Set if the value of LSB is 1 before instruction execution.
N: Set if ACCA is negative after instruction execution.
OVFP 7: Set if ACCA is $0000 after instruction execution.

HITACHI 163

SRB

I. Pointer addressing mode

Assembler
syntax [<label>] ASRBA <operand(:)>[A <comment>]
Example SRBAA ,XY(2,4),RA
® ® ®
Operation ® ALU operation
The contents of ACCB is shifted right 1 bit.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o
ERENEEEREERENEE T
ACCB
® Operand
For details of operand, see 5.2.1 'Operand (©)'.
In 'Operand()', ""ACC" means ACCB.
Instruction
code 21 20191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
Lofefofafofofo i [A[T Al TT T T T T[]
_/ N7
Acc/ X-Page Y-Page Selects
DREG L RA/RB
Write Selects memory ' —Increments
output X.Y/X-G RAM/ROM
pointer
CCR CCR C: Set if the value of LSB is 1 before instruction execution.
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is $0000 after instruction execution.

164 HITACHI

SRB

II. Direct addressing mode
A bl
siii:x er [<1label>] ASRBA <operand(:)>[A <comment>]

Example

SRBAEE, 0,00

@

@

Operation

® ALU operation
The contents of ACCB is shifted right 1 bit.

ACCB
® Operand
For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand(:)', "ACC" means ACCB.

Instruction
code

21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2

(ol ol Tofofo[x][T Jofol [[| [L] IIJiJ

ACC/ (Page) (Pointer)
‘DREG direct address
Write

CCR

OVFP

CCR C:

Set if the value of LSB is 1 before instruction execution.
Set if ACCB is negative after instruction execution.
Set if ACCB is $0000 after instruction execution.

HITACHI 165

SLA

I. Pointer addressing mode
Assembler
syntax [<label>] ASLAA <operand(:)>[A <comment>]
Example

SLA2A, XY (2,4) ,RA
® 6 O]

Operation

® ALU operation
The contents of ACCA is shifted left 1 bit.

@® Operand

For details of operand, see 5.2.1 'Operand C)'.
In 'Operand()', "ACC" means ACCA.

® Example for n bit shift

LIRC 4
RPTA EE,0,00
SLA EE,XY(0,0),RA

; Number of repeat n=(4+1)
; Repeat instruction
5 Shift left 5 bits

Instruction

cod 21 20191817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
e Lofrfofrfefofofufo] T[T TTI[T[TT]]
_/ A2 W L
ACC/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memoryl-Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if the value of MSB is 1 before instruction execution.
N: Set if ACCA is negative after instruction execution.
OVFP Z:

Set if ACCA is $0000 after instruction execution.

166 HITACHI

SLA

II. Direct addressing mode

Assembler
syntax [<label>] ASLAA <operand(:)>[A <comment>]
Example SLAAEE 0,00
@ O
Operation ® ALU operation
The contents of ACCA is shifted left 1 bit.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I T T T] fe
ACCA
® Operand
For details of operand, see 5.2.1 'OperandC:)'.
In 'Operand(D) ', "ACC" means ACCA.
Instruction
code 212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
lo[afo1[xfofonTol T Jofe[TTTTTITI]
N / ~
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Set if the value of MSB is 1 before instruction execution.
N: Set if ACCA is negative after instruction execution.
OVFP 7: Set if ACCA is $0000 after instruction execution.

HITACHI 167

SLB

I. Pointer addressing mode

Assembler
syntax [<label>] ASLBA <operand(:>>[A <comment>]
Example SLBAA ,XY(2,4) ,RA
@ @ @
Operation ® ALU operation
The contents of ACCB is shifted left 1 bit.

® Operand
For details of operand, see 5.2.1 'Operand(:)'.

In 'Operand (C) ', "ACC" means ACCB.

OVFP Z:

Instruction
code 21 2019181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
lftfolrfifofo o[T [T TTTTTTT]
7/ | L 1
ACC/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory — Increments
output X-Y/X-G RAM/ROM
pointer
CCR C: Set if the value of MSB is 1 before instruction execution.

CCR
N: Set if ACCB is negative after instruction execution.
Set if ACCB is $0000 after instruction execution.

168 HITACHI

SLB

II. Direct addressing mode
Assembler
syntax [<label>] ASLBA <operand(:)>[A <comment>]
Example

SLB-~EE , 0,00
2@

Operation

@® ALU operation
The contents of ACCB is shifted left 1 bit.

ST T I I}

@ Operand
For details of operand, see 5.2.1 'Operand<:)'

In 'Operand(D) ', "ACC" means ACCB.

Instruction
code

2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2

IZOIIIIOIIIIIOIOMOILIOIOLLI L1 T

Acc/ (Page) (Pointer)
DREG direct address
Write

CCR

OVFP

CCR C: Set if the value of MSB is 1 before instruction execution.
N: Set if ACCB is negative after instruction execution.
7Z: Set if ACCB is $0000 after instruction execution.

HITACHI 169

FLTA

I. Pointer addressing mode

Assembler
>
syntax [<label>] AFLTAA <operand (C)>[A <comment>]
Example

FLTA~EE ,XY(2,7) ,RA

@ ® @

Operation

@® ALU operation
Transformation of data representation
(fixed point - floating point)

ACCA(16 bits, fixed point) - ACCA(20 bits, floating point)

This instruction transforms the fixed point data in ACCA to
the floating point data, using an exponent part (4 bits) of

Y-Bus output data (16 bits) specified by operand as a scaling
constant.

Fixed point data (16 bits) Scaling constant (Y-Bus data)

don't care
ACCA i] [l lj
mant. GR exp.
M * with normalization
15 03 0
mant. lexp.[

Floating point data (20 bits)

(note) A mantissa (12 bits) of Y-Bus data can be any value.

@ Operand

For details of operand, see 5.2.1 'Operand()’.
In 'Operand (© ', "ACC" means ACCA.

Instruction

code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 10
Lo ool TR TTTTTT] 1{]
acc/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory L— Increments
output X-Y/X.G RAM/ROM
pointer
CCR CCR C: 0
N: Set if ACCA is negative.
OVFP Z: Set if ACCA is $0000.

170 HITACH!

FLTA

II. Direct addressing mode

Assembler
syntax [<label>] AFLTAA <operand<:)>[A <comment>]
Example FLTAAEE , 6,30
® ®
Operation @® ALU operation
Transformation of data representation
(fixed point - floating point)
ACCA(16 bits, fixed point) - ACCA(20 bits, floating point)
This instruction transforms the fixed point data in ACCA to
the floating point data, using an exponent part (4 bits) of
Y-Bus output data (16 bits) specified by operand as a scaling
constant.
Fixed point data (16 bifs) Scaling constant (Y-Bus data)
15 0 15 43 0
ACCAlgi | izﬁl don't care | |
mant. exp. J
W * with normalization
15 03 O
ACCA| mant. leng
Floating point data (20 bits)
(note) A mantissa (12 bits) of Y-Bus data can be any value.
® Operand
For details of operand, see 5.2.1 OperandCD
In 'Operand(:) "ACC" means ACCA.
Instruction
code 2120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
folta[afafofafofol T Tofol [TTTTT11]]
7/ _J/
AcC/ (Page) (Pointer)
DR?G direct address
Write
CCR CCR C: O
N: Set if ACCA is negative.
OVFP Z: Set if ACCA is $0000.

HITACHI 171

FLTB

I. Pointer addressing mode

Assembler
syntax [<label>] AFLTBA <operand(:)>[A <comment>]
Example

FLTBAEE ,XY(1,6) ,RA
@ @ @

Operation

® ALU operation
Transformation of data representation
(fixed point - floating point)

ACCB(16 bits, fixed point) - ACCB(20 bits, floating point)

This instruction transforms the fixed point data in ACCB to
the floating point data, using an exponent part (4 bits) of
Y-Bus output data (16 bits) specified by operand as a scaling
constant.

Fixed point data (16 bits) Scaling constant (Y-Bus data)
15 43 0

0 15
ACCBI7 J Egﬁlgidon't care | AJ
mant. GR ©XP-]

w * with normalization
15

03 0
ACCB mant. [exp.|
Floating point data (20 bits)

(note) A mantissa (12 bits) of Y-Bus data can be any value.

@® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'OperandC)', "ACC" means ACCB.

Instruction
code

21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

L TL oD T T TTTTT[T]
;EE/ _____Aﬁwvv*J__d/tSelects
X-Page Y-Page [— RA/RB
DREG
Write Selects memor Increments
' Y RAM/ROM

output X-Y/X-G pointer

CCR

OVFP

CCR C: O
N: Set if ACCB is negative.
Z: Set if ACCB is $0000.

172 HITACHI

FLTB

II. Direct addressing mode

Assembler
< > < STA < ST
syntax [<label>] AFLTBA Operand<:) [A <comment>]
E 1
rampe FLTBAEE . 1, 44
@ @
Operation ® ALU operation

Transformation of data representation
(fixed point - floating point)

ACCB(16 bits, fixed point) - ACCB(20 bits, floating point)]

This instruction transforms the fixed point data in ACCB to
the floating point data, using an exponent part (4 bits) of
Y-Bus output data (16 bits) specified by operand as a scaling
constant.

Fixed point data (16 bits) Scaling constant (Y-Bus data)

15 0 ROM 15 43 0
ACCB [AJ RAM don't care | |
I mant. exp.
“ * with normalization
15 03 O
ACCB[mant. legBJ

Floating point data (20 bits)

(note) A mantissa (12 bits) of Y-Bus data can be any value.

® Operand
For details of operand, see 5.2.1 'Operand() '.
In 'Operand (@ ', "ACC" means ACCB.
Instruction
code 212019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
phnfonfon T Jofol [T [[[[[]]
N /
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: O
N: Set if ACCB is negative.
OVFP Z: Set if ACCB is $0000.

HITACHI 173

FIXA

I. Pointer addressing mode

Assembler ();> A <
eynias [<label>] AFIXAA <operand(C)>[A <comment>]
Example FIXAAEE ,XY(2,7) ,RA

® ® @

Operation

® ALU operation
Transformation of data representation
(floating point - fixed point)

ACCA(20 bits, floating point) = ACCA(1l6 bits, fixed point)

This instruction transforms the floating point data in ACCA to
the fixed point data using an exponent part (4 bits) of Y-Bus
output data (16 bits) specified by operand as a scaling constant.

Floating point data (20 bits) Scaling constant (Y-Bus data)

15 03 0 ROMlS 43 0
ACCA F' mant. |exp. RAM $000 l %AJ
GR |
* mantissa part is shifted
righ (l-exp.) bits.

15 0
acca [i

Fixed point data (16 bits)

(note) A mantissa (12 bits) of Y-Bus data must be all '0'.
If an overflow occurs, the mantissa is fixed to
positive/negative maximum value.

@® Operand
For details of operand, see 5.2.1 'Operand(:D'.
In 'Operand(D', "ACC" means ACCA.

Instruction
code 212019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[oJoJo 1 [o[o]t oTo [[1[[[T[T T[]
_/ YA
ACC/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory Increments
output X:Y/X-G RAM/ROM
pointer
CCR CCR C: 0
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is $0000 after instruction execution.

174 HITACH!

FIXA

II. Direct addressing mode

Assembler
syntax [<label>] AFIXAA <operand(:)>[A <comment>]

Example FIXA~ EE,6,30
® ®

Operation . ALU operation .
Transformation of data representation
(floating point - fixed point)

ACCA(20 bits, floating point) - ACCA(1l6 bits, fixed point)

This instruction transforms the floating point data in ACCA to
the fixed point data using an exponent part (4 bits) of Y-Bus
output data (16 bits) specified by operand as a scaling constant.

Floating point data (20 bits) Scaling constant (Y-Bus data)
15 43 0

rceh 03 0 ROMlS i .
(mant. IeXE;] RAM[S000 l 1 J

* mantissa part is shifted
right (l-exp.) bits.

15 0
ACCA | |

Fixed point data (16 bits)

(note) A mantissa (12 bits) of Y-Bus data must be all '0'.
If an overflow occurs, the mantissa is fixed to
positive/negative maximum value.

o Example (Shift arithmetic n bit)

FLTA EE,7,0 ; FIX?FLOAT Address Data
FIXA EE,7,1 ; FLOAT-FIX 7,0 $0000

with scaling| 7,1 $000n
Shift right n bit (n=-8V+7)

In this example, take care of overflow protection.
Operand

For details of operand, see 5.2.1 'Operand() .
In 'Operand C) ', "ACC" means ACCA.

Instruction 21 20 19 18 17 16 1514 13 12 i1 10 9 8 7 6 5 4 3 2

code (oo ol ol Lo] Jolol T T L[11 T1]

/

R e N

ACC/ (Page) (Pointer)
DREG direct address
Write

CCR CCR C: O
N: Set if ACCA is negative after instruction execution.
OVFP Z: Set if ACCA is $0000 after instruction execution.

HITACHI 175

FIXB

I. Pointer addressing mode

Assembler
syntax

[<label>] AFIXBA <operand(:)>[A <comment>]

Example

FIXBAEE,XY(2,7),RA
® ® O]

Operation

. ALU operation
Transformation of data representation
(floating point » fixed point)

ACCB(20 bits, floating point) > ACCB(l6 bits, fixed point)

This instruction transforms the floating point data in ACCB .to
the fixed point data using an exponent part (4 bits) of Y-Bus
output data (16 bits) specified by operand as a scaling constant.
Floating point data (16 bits) Scaling constant (Y-Bus data)
15 03 O ROM 15 43 0

ACCB mant. |exBJ RAM $000 | QAJ

GR

* mantissa part is shifted
right (f-exp.) bits.

15 0

accs[B

Fixed point data (16 bits)

(note) A mantissa (12 bits) of Y-Bus data must be all '0’.
If an overflow occurs, the mantissa is fixed to
positive/negative maximum value.

Operand
For details of operand, see 5.2.1 'OperandC:)'.
In 'Operand()', "ACC" means ACCB.

Instruction
code

21 201918 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
lofofo[nfoJofufoln] T o[[T [[TT]]]]
N P t_Selects

Acc/ X-Page Y—Page—T
DREG RA/RB

Write L—Selects memory L Increments
output X-Y/X-G RAM/ROM
pointer

CCR

OVFP

CCR C: O
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is $0000 after instruction execution.

176 HITACHI

FIXB

II. Direct addressing mode

A bler
siiiZX [<label>] AFIXBA <operand(:)>[A <comment>]

Example FIXB~ EE, 6,30

® ®

Operation @® ALU operation

Transformation of data representation
(floating point - fixed point)

L ACCB(20 bits, floating point) =+ ACCB(16 bits, fixed point)

This instruction transforms the floating point data in ACCB to
the fixed point data using an exponent part (4 bits) of Y-Bus
output data (16 bits) specified by operand as a scaling constant.

Floating point data (16 bits) Scaling constant (Y-Bus data)

15 03 0 oL 43 0
t. - 000 3
Crme 2 e
* mantissa part is shifted
righ (%-exp.) bits.

0

15
AccB [1

Fixed point data (16 bits)

(note) A mantissa (12 bits) of Y-Bus data must be all '0O'.
If an overflow occurs, the mantissa is fixed to
positive/negative maximum value.

@® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand (D) ', "ACC" means ACCB.
Instruction
code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[ofofoJtfofoftfofr] [JoJo] | | | | 1]
n_/
ACC/ (Page) (Pointer)
DR?G direct address
Write
CCR CCR C: O
N: Set if ACCB is negative after instruction execution.
OVFP Z: Set if ACCB is $0000 after instruction execution.

HITACHI 177

FCLRA

I. Pointer addressing mode

Assembler
svntax

[<label>] AFCLRAA <operand(:)>[A <comment>]

Example

FCLRAA~ EE,XY(2,7),RA
@ ® ®

Operation

® ALU operation
Floating point arithmetic

Mantissa $0000 > ACCA (16 bits)
Exponent $8 > ACCA (4 bits)
This instruction clears ACCA. S ACCA = 0.0 x 278
® Operand

For details of operand, see 5.2.1 'Operand C)'.

In 'Operand ©)', "ACC" means ACCA.

Instruction

21 2019181716 1514 13121110 9 8 7 6 5 4 3

2 10
d
Dol Tofofo[[W[T T T TTT 1]
N/ Y, WY
ACC/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory —Increments
output X-Y/X.G RAM/ROM
pointer
CCR CCR C: Not affected.
N: 0
OVFP 7.1

178 HITACHI

II. Direct addressing mode

FCLRA

Assembler
syntax

[<label>] AFCLRAA <operand<:)>[A <comment>]

Example

FCLRAA~ EE,0,00
® ®

Operation

@ ALU operation
Floating point arithmetic

Mantissa $0000 -~ ACCA (16 bits)
Exponent $8 - ACCA (4 bits)
This instruction clears ACCA. .. ACCA=0.0 x 270
@ Operand

For details of operand, see 5.2.1 'Operand(:)'.
In 'Operand(D) ', "ACC" means ACCA.

Instruction
code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[[afafofxfofofol T Jofol [T [[T 11]
n_/ \ 7
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Not affected.
N: O
OVFP z: 1

HITACHI 179

FCLRB

I. Pointer addressing mode

Assembler
syntax [<label>] AFCLRBA <operand(:)>[A <comment>]
Example FCLRB~ EE,XY(2,7),RA
® ® ®
Operation @ ALU operation
Floating point arithmetic
Mantissa $0000 -~ ACCB (16 bits)
Exponent $8 > ACCB (4 bits)
This instruction clears ACCB. . ACCB=0.0 x 278
® Operand
For details of operand, see 5.2.1 ’OperandCD'.
In 'Operand()’, "ACC'" means ACCB.
izgerCtlon 21 20191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
Lefiafolfolo i T [T TTTTTTT]
Select
Acc/ X-Page Y-Page e/§§ s
DREG RA
Write Selects memory -—lincrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Not affected.
N: O
OVFP Z: 1

180 HITACHI

FCLRB

II. Direct addressing mode
Assembler
syntax [<label>] AFCLRBA <operand (D)>[A <comment>]
Example FCLRB~ EE,0,00
® ®
Operation ® ALU operation

Floating point arithmetic

Mantissa $0000 -~ ACCB (16 bits)
Exponent $8 ~ ACCB (4 bits)
This instruction clears ACCB. S ACCB = 0.0 x 278
® Operand

For details of operand, see 5.2.1 'Operand() '
In 'Operand (D) ', "ACC" means ACCB.

Instruction

code 2120191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
Ghoafofifofon [Jofol TTTTTTT1]
./ /
AcC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Not affected.
N: O
OVFP z: 1

HITACHI 181

CLRA

I. Pointer addressing mode

Assembler
syntax

[<label>] ACLRAA <operand(:>>[A <comment>]

Example

CLRA~ EE,XY(2,7),RA
® ® ®

Operation

® ALU operation
Fixed point arithmetic

$0000 -~ ACCA (16 bits)

This instruction clears ACCA. An exponent (4 bits) of the
floating point data is undefined.

® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand(:)', "ACC" means ACCA:

Instruction
code

21 2019 18 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

OOLLe[oo [DI T T T T TTT]
7/ N\ 7 t
ACC/ X-Page Y-Page Selects
DREG I RA/RB e
Write Selects memory ncremen
output X-Y/X-G RAM/ROM
Pointer
CCR CCR C: Not affected.
N: O
OVFP Z: 1

182 HITACH!

II. Direct addressing mode

CLRA

Assembler
syntax [<label>] ACLRAA <operand<>>[A <comment>]
Example CLRA~ EE, 0,00
® O
Operation @ ALU operation
Fixed point arithmetic
$0000 > ACCA (16 bits)
This instruction clears ACCA. An exponent (4 bits) of the
floating point data is undefined.
@® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand (D) ', "ACC" means ACCA.
Instruction
code 2120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
[aa[ifolafolafol [Tofo TTTTTTIT]J
—
Acc/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C: Not affected.
N: O
OVFP Z: 1

HITACHI 183

CLRB

I. Pointer addressing mode

Assembler
syntax

[<label>] ACLRBA <operand(:)>[A <comment>]

Example

CLRBA EE,XY(2,7),RA
@ ®@ @

Operation

® ALU operation
Fixed point arithmetic

[4§0000 - ACCB (16 bits)gg]

This instruction clears ACCB. An exponent (4 bits) of the
floating point data is undefined.

® Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'Operand(:)', "ACC'" means ACCB.

Instruction
code 21 2019 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
oo i T TTTTTTTTT]
N/) Y, *—S lects
ACC/ X-Page Y-Page e
DREG RA/RB
Writ Selects memory - LnCrements
e output X.-Y/X:.G RAM/ROM
Pointer
CCR CCR C: Not affected.
N: O
OVFP Z: 1

184 HITACHI

CLRB

II. Direct addressing mode

Assembler
syntax [<label>] ACLRBA <0perand<:)>[A <comment>]
Example CLRB~ EE, 0, 00
® ®
Operation ® ALU operation

Fixed point arithmetic

|7$0000 - ACCB (16 bits)]

This instruction clears ACCB. An exponent (4 bits) of the
floating point data is undefined.

® Operand
For details of operand, see 5.2.1 'Operand()
In 'Operand() "ACC" means ACCB.

Instruction
code

20191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
ll|1|1|1|011|0|llll Llofol ITTTTIILT]
7/
Acc/ (Page) (Pointer)

DREG direct address
Write ,

CCR

OVFP

CCR C: Not affected.
N: O
Z: 1

HITACH! 185

FNOPA

I. Pointer addressing mode

Assembler
syntax

[<label>] AFNOPAA <operand(:)> [A <comment>]

Example

FNOPA~ A, XY(0,1),RA+
@ ® ®

Operation

@® ALU operation

Floating point arithmetic

No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
floating point representation. ACCA is not affected.

® Operand

For details of operand, see 5.2.1 'Operand(:D'.
In 'Operand()', "ACC" means ACCA.

Instruction

code 2120191817 161514 13121110 9 8 7 6 5 4 3 2 1 0
Daafofolafofol TR [T T T TTTTT]
o N Lsetects
AcC/ X-Page Y-Page RA/RB
DREG
Write Selects memory —lncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C:
N: } not affected
OVFP Z:

186 HITACHI

II. Direct addressing mode

FNOPA

Assembler
syntax [<label>] AFNOPAA <operand(:)>[A <comment>]
Example FNOPA~ A, 2, 40
® ®
Operation ® ALy operation
Floating point arithmetic
No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
floating point representation. ACCA is not affected.
® Operand
For details of operand, see 5.2.1 'Operand (D) '.
In 'Operand (D) ', "ACC" means ACCA.
Instruction
code 212019181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
Ol foJoafofol T oo [T [T TTTT]
N/
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C:
N: } not affected
OVFP Z:

HITACH! 187

FNOPB

I. Pointer addressing mode

Assembler
syntax [<label>] AFNOPBA <operand(:)>[A <comment>]
Frample | FNOPBA A, XY(0. 1), RA
® @ ®
Operation @ ALU operation
Floating point arithmetic
No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
floating point representation. ACCB is not affected.
® Operand
For details of operand, see 5.2.1 'OperandCD'.
In 'Operand()', ""ACC" means ACCB.
Instruction
code 21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
pfafefofofafolnf A [T TTTTTTT]
(- | A S— T
AcCC/ X-Page Y-Page Selects
DREG RA/RB
Write —Selects memory —— Increments
output X.Y/X.G RAM/ROM
pointer
CCR CCR C:
N:} not affected
OVFP Z:

188 HITACHI

FNOPB

IT. Direct addressing mode

Assembler
syntax

[<label>] AFNOPBA <operand(:)>[A <comment>]

Example

FNOPB& A, 3,40
® ®

Operation

@ ALU operation
Floating point arithmetic

No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
floating point representation. ACCB is not affected.

@ Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand()', "ACC'" means ACCB.

Instruction
code

21 20 19 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 O

afafefofofufo[a [Jofof [[T [[T[]]
N
Acc/ (Page) (Pointer)
‘aigie direct address
CCR CCR C:
N: } not affected
OVFP 7.

HITACHI1 189

NOPA

I. Pointer addressing mode

Assembler
syntax

[<label>] ANOPAA <operand(:)>[A <comment>]

Example

NOPA~ D, XY (0, 0) , RA+
® ® ®

Operation

@ ALU operation
Fixed point arithmetic

No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
fixed point representation. ACCA is not affected.

@ Operand

For details of operand, see 5.2.1 'Operand(:)'.
In 'OperandCD', "ACC" means ACCA.

Instruction

21 2019 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

code
[fafafafofofafafol T o [T T[T TTTT]
— LSelects
ACC/ X-Page Y-Page RA/RB
DREG
Write Selects memory -— Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C:
N:] not affected
OVFP 7

190 HITACH!I

NOPA

IT. Direct addressing mode

Assembler
syntax [<label>] ANOPAA <operand (D) >[A <comment>]
Example NOPA~ A, 2, 39
® o
Operation @ ALU operation
Fixed point arithmetic
No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
fixed point representation. ACCA is not affected.
® Operand
For details of operand, see 5.2.1 'Operand<:)'.
In 'Operand (D) ', "ACC" means ACCA.
Instruction
code 21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[[afafafolofufafol [oo TT [T []]]
N
ACC/ (Page) (Pointer)
DREG direct address
Write
CCR CCR C:
N:} not affected
OVFP Z:

HITACHI 191

NOPB

I. Pointer addressing mode

Assembler
syntax [<label>] ANOPBA <operand (C)>[A <comment>]
frample | NOPB~ BE,XG(1,3) RA
® ® ®
Operation ® ALU operation
Fixed point arithmetic
No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the
fixed point representation. ACCB is not affected.
@® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand()', ""ACC'" means ACCB.
Instruction
code 21 20 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
ffofe i L TP T T T TTT]
— N AN
Selects
Acc/ X-Page Y-Page RA/RB
DREG
Write —Selects memory — lncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C:
N:} not affected
OVFP Z:

192 HITACHI1

II. Direct addressing mode

NOPB

Assembler
syntax [<label>] ANOPBA <operand<:)>[A <comment>]
Example NOPBa A, 1, 44

® ©

Operation

@® ALU operation
Fixed point arithmetic

No operation is performed in the ALU. A read and write to
the data ROM/RAM and multiplier input are performed in the

fixed point representation. ACCB is not affected.

® Operand

For details of operand, see 5.2.1 'OperanddD'.
In 'Operand@ ', "ACC" means ACCB.

Instruction
code

21 20 19 18 17 16 1514 13 1211 10 9 8 7 6 5 4 3 2 1 0

Ol foolaa[a] T Jofo [T TTT[T]

A
AcCC/ (Page) (Pointer)
DREG direct address
Write

CCR CCR C:

N: } not affected
OVFP Z:

HITACHI 193

FSGYA

I. Pointer addressing mode

Assembler
syntax [<label>] AFSGYAA <operand(:)>[A <comment>]
Example

FSGYA~ EE,XG(1,3),RA
® ® ®

Operation

® ALU operation
Floating point arithmetic

ACCA > ACCA If sign ACCA=sign Y
(20 bits) (20bits)

-ACCA -+ ACCA If sign ACCA%*sign Y
(20bits) (20bits)

If sign bit value of Y-Bus output data specified in
operand equals that of ACCA, the ACCA is not affected.
Otherwise, -ACCA - ACCA.

@® Operand
For details of operand, see 5.2.1 'Operand C)'.
In 'OperandC)', "ACC" means ACCA.

Instruction
code

21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Loft[t[rfofofafofo] TTA[TTTTTTTTT]
-/ A W
ACC/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory — Increments
output X-Y/X.G RAM/ROM pointer
CCR CCR C: Set if sign ACCA¥sign Y and a mantissa of the ACCA is
$0000 before instruction execution; cleared otherwise.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if a mantissa of ACCA is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

194 HITACHL!

FSGYA

II. Direct addressing mode

Assembler

syntax [<label>] AFSGYAA <operand(D) >[A <comment>]

Example FSGYa A, 2, 14

® ®

Operation @® ALU operation
Floating point arithmetic

ACCA - ACCA If sign ACCA=sign Y
(20bits) (20bits)

-ACCA > ACCA If sign ACCA¥sign Y
(20bits) (20bits)

If sign bit value of data on the Operand(?) memory location
(Y-Bus output data) equals that of ACCA, the ACCA is not
affected. Otherwise, ~ACCA - ACCA.

@® Operand
For details of operand, see 5.2.1 'Operand@@ .
In 'Operand(:)', "ACC" means ACCA.

Instruction
code 21 2019 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

[oTi[xTxTofoTa o o[T Jolo| I [| L] [T 1]

ACC/ (Page) (Pointer)
DREG
Write

direct address

CCR CCR C: Set if sign ACCA%sign Y and a mantissa of the ACCA is

$0000 before instruction execution; cleared otherwise.

OVFP N: Set if ACCA is negative after instruction execution.

7: Set if a mantissa of ACCA is $0000 after instruction
execution.

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 195

FSGYB

I. Pointer addressing mode

1
2;5?:2 er [<label>] AFSGYBA <operand(:)>[A <comment>]
Example

FSGYB~ EE, XG(1,3) , RA
® ® @

Operation

® ALU operation
Floating point arithmetic

ACCB > ACCB If sign ACCB=sign Y
(20bits) (20bits)

~-ACCB d ACCB If sign ACCB¥sign Y
(20bits) (20bits)

If sign bit value of Y-Bus output data specified in
operand equals that of ACCB, the ACCB is not affected.
Otherwise, -ACCB ~ ACCB.

@ Operand
For details of operand, see 5.2.1 'Operand(:>'.
In 'Operand()', "ACC" means ACCB.

Instruction
code 21 20 19 1817161514 13121110 9 8 7 6 5 4 3 2 1 0
oftfufafofofifon [T T TTTTTTT]]]
7 N
Acc/ X-Page Y-Page Selects
DREG RA/RB
Write Selects memory — Increments
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if sign ACCB%sign Y and a mantissa of the ACCB is
$0000 before instruction execution; cleared otherwise.
OVFP N: Set if ACCB is negative after instruction execution.

Z: Set if a mantissa of ACCB is $0000 after instruction
execution.

OVFP OQVFP bit of the CTR must be set to 1 beforehand.

196 HITACH!

FSGYB

II. Direct addressing mode

Assembler
syntax

[<1label>] AFSGYBA <operand<:)>[A <comment>]

Example

FSGYBa A, 2,14
® O

Operation

@® ALU operation
Floating point arithmetic

ACCB - ACCB If sign ACCB=sign Y
(20bits) (20bits)

~ACCB - ACCB If sign ACCBxsign Y
(20bits) (20bits)

If sign bit value of data on the operand(:) memory location
(Y-Bus output data) equals that of ACCB, the ACCB is not
affected. Otherwise, —ACCB - ACCB.

@® Operand
For details of operand, see 5.2.1 '0perand<:)'.
In 'Operand(:)', "ACC" means ACCB.

Instruction
code

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

[olx[x[xJofofsfola T Jofol [L] L LI LI}

Acc/ (Page) (Pointer)
DREG direct address
Write

CCR

OVFP

CCR C: Set if sign ACCBxsign Y and a mantissa of the ACCB is
$0000 before instruction execution; cleared otherwise.
Set if ACCB is negative after instruction execution.
Set if a mantissa of ACCB is $0000 after instruction
execution.

N Z

OVFP OVFP bit of the CTR must be set to 1 beforehand.

HITACHI 197

SGYA

I. Pointer addressing mode

Assembler
syntax [<label>] ASGYAA <operand(:)>[A <comment>]
Example SGYA~ EE, XG(1,3) ,RA
©] ® ®
Operation @ ALU operation

Fixed point arithmetic

ACCA > ACCA If sign ACCA=sign Y
(lébits) (16bits)

-ACCA he ACCA If sign ACCA%¥sign Y
(l6bits) (16bits)

If sign bit value of Y-Bus output data specified in
operand equals that of ACCA, the ACCA is not affected.
Otherwise, —-ACCA - ACCA.

@® Operand
For details of operand, see 5.2.1 'Operand()'.
In 'Operand C)', "ACC" means ACCA.

Instruction

21 2019 181716 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

code
Lofifaffofofuftfol [[[T TTTTT]
N e Selects
Acc/ X-Page Y-Page RA/RB
DREG
Write Selects memory — lncrements
output X-Y/X.G RAM/ROM
pointer
CCR CCR C: Set if sign ACCAXsign Y and the ACCA is $0000 before
instruction execution; cleared otherwise.
OVFP N: Set if ACCA is negative after instruction execution.

Z: Set if ACCA is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

198 HITACHI

SGYA

II. Direct addressing mode

Assembler

syntax [<1abel>] ASGYAA <operand® >[A <Comment>]

Example SGYA~ A, 2,14

® o

Operation @® ALU operation
Fixed point arithmetic

ACCA ~ ACCA If sign ACCA=sign Y
(16bits) (16bits)

-ACCA e ACCA If sign ACCAXxsign Y
(l6bits) (lébits)

If sign bit value of data on the operand (3) memory location
(Y-Bus output data) equals that of ACCA, the ACCA is not
affected. Otherwise, —-ACCA - ACCA.

@ Operand .
For details of operand, see 5.2.1 'Operand(i)'.
In 'Operand D) ', "ACC" means ACCA.

Instruction
code 21 2019 1817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0

[ofa[x e ofoafxfol T Jofo[T [I [LILT]

AcC/ (Page) (Pointer)

DREG direct address
Write

CCR CCR C: Set if sign ACCAxsign Y and the ACCA is $0000 before

instruction execution; cleared otherwise.

OVFP N: Set if ACCA is negative after instruction execution.
Z: Set if ACCA is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

HITACH! 199

SGYB

I. Pointer addressing mode

Assembler
syntax [<label>] ASGYBA <operand(:)>[A <comment >]
Example

SGYB«~ EE , XG(1,3) ,RA
@ @ @)

Operation

@® ALU operation
Fixed point arithmetic

ACCB - ACCB If sign ACCB=sign Y
(16bits) (16bits)

-ACCB ~ ACCB If sign ACCBxsign Y
(l6bits) (lébits)

If sign bit value of Y-Bus output data specified in
operand equals that of ACCB, the ACCB is not affected.
Otherwise, —-ACCB - ACCB.

@ operand
For details of operand, see 5.2.1 'Operand C)'.
In 'Operand (©) ', "ACC" means ACCB.

Instruction)
code 212019 1817 161514 13121110 9 8 7 6 5 4 3 2 1 0
Lolafofo i [T [T T T[]
~/ Y, N Select
Acc/ X-Page Y-Page erects
DREG RA/RB
Write '—Selects memory L Tncrements
output X-Y/X-G RAM/ROM
pointer
CCR CCR C: Set if sign ACCB¥sign Y and the ACCB is $0000 before
instruction execution; cleared otherwise.
OVFP N: Set if ACCB is negative after instruction execution.

Z: Set if ACCB is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.
0: no overflow protection 1: overflow protection

200 HITACHI

SGYB

II. Direct addressing mode

Assembler
syntax [<label>] ASGYBA <operand(:)>[A <comment>]
Example SGYBe~ A, 2, 14
® O
Operation @® ALU operation

Fixed point arithmetic

ACCB - ACCB If sign ACCB=sign Y
(16 bits) (16bits)

-ACCB -~ ACCB If sign ACCBXxsign Y
(16bits) (16bits)

If sign bit value of data on the operandCD memory location
(Y-Bus output data) equals that of ACCB, the ACCB is not
affected. Otherwise, -ACCB - ACCB.

® Operand
For details of operand, see 5.2.1 'OperandCD'.
In 'Operand D) ', "ACC" means ACCB.

Instruction
code

21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
Lofafafafofola[a[a] [JoJofl [T [T TTT]
A
Acc/ (Page) (Pointer)
DREG

Write direct address

CCR

OVFP

CCR C: Set if sign ACCB%sign Y and the ACCB is $0000 before
instruction execution; cleared otherwise.
N: Set if ACCB is negative after instruction execution.
Z: Set if ACCB is $0000 after instruction execution.

OVFP Overflow protection is controlled by the status of OVFP bit.

0: no overflow protection 1: overflow protection

HITACHI 201

LIA

Assembler
| syntax [<label>] ALIAA <constant> [A <comment>]
Example LIA A30

Operation

The constant value (16 bits) is stored in ACCA.
Immediate data must be used for a constant.

Immediate data (16 bits))

undefined

15 4:g 0 3 0
acea L L LT T T TTLITITTITIT)] CITT]
exponent

mantissa

Instruction

21 20 19 1817 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0

code
L1lofofofofo] | [] HEREERR
OP code Immediate data
CCR CCR C: Not affected.

N: Set if ACCA is negative.
Z: Set if ACCA is O.

LIB

iiiizzler [<label>] ALIBA <constant> [A <comment>]
Example LIB ASOLFA+2
Operation The constant value (16 bits) is stored in ACCB.
Immediate data must be used for a constant.
Immediate data (16 bits)
{;g undefined
15 0 3 0
sces [[T T TTTTTITITTITTT] LT
mantissa exponent
Instruction
code 212019 1817161514 1312 11 10 9 8 7 6 5 4 3 2 1 0
[elofofofox [T T LTTTITTITTTT]
—_——
OP code Immediate data
CCR CCR C: Not affected.

N: Set if ACCB is negative.
Z: Set if ACCB is 0.

202 HITACHI

LIRA

Assembler
syntax [<label>] ALIRAA <constant> [A <comment>]
Example LIRA A29
Operation The constant value (6 bits) is transferred to the RAM pointer A.
Immediate data must be used for a constant.
Immediate data (6 bits) The value is selectable
from 0 to 63.
151413121110
RAM pointer A
MSB LSB A ...Decimal point
Instruction
21 2019 181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
code
[1]ofo[of1fo[[[] [] [oofofo[ofoofoo]o]
OP code Immediate data
CCR CCR C:
N: Not affected.
Z:

LIRB

Assembler
syntax [<label>] ALIRBA <constant> [A <comment>]
Example LIRB A4l
Operation The constant value (6 bits) is transferred to the RAM pointer B.

Immediate data must be used for a constant.

The value is selectable

Immediate data (6 bits)
from 0 to 63.

151413121110
RAM pointer B

A
MSB LSB A...Decimal point

Instruction

code 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1Toofox[x[[T T [T [ofoJoJofofo]ofo]o]o]
OP code Immediate data
CCR CCR C:
N: } Not affected.
Z:

HITACHI 203

LIRO

A bler
s;ii:x ¢ [<label>] ALIROA <constant> [A <comment>]
Example LIRO Al3

The constant value (6 bits) is transferred to the ROM pointer.

Operation
Immediate data must be used for a constant.

The value is selectable

Immediate data (6 bits)
from 0 to 63.

151413121110
ROM pointer

A X
MSB LSB A...Decimal point
Instruction
code 212019181716 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1[oo[1[o[ol T T [[T Tololo[o[o[ofolo]o]o]

OP code Immediate data

CCR CCR C:
N: } Not affected.

Z:

LIRC

1
Assembler [<label>] ALIRCA <constant> [A <comment>]
syntax

Example LIRC Al5
Operation The constant value (6 bits) is transferred to the RC.
Immediate data must be used for a constant.
Immediate data (6 bits) The value is selectable
from 0 to 63.
151413121110
RC
A
MSB LSB A... Decimal point
Instruction
code 2120191817 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
[1]ofo[1Jo[a[[[[[[[ofofoJoJo[o]o]0o]0]o]
OP cedo Immediate data
CCR CCR C:
N:} Not affected.
Z:

204 HITACHI

JCS

Assembler
syntax [<label>] AJCSA <constant> [A <comment>]
Example JCS LA%%l
Operation This instruction produces a jump if a carry flag of the CCR is set.

C) : label or address of the destination (address=0 v 486)

Even if an interrupt is requested under a jump condition, it is not
accepted before the next instruction is completely executed.

(Interrupt wait state)

Instruction
code

2120101817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1]o[1]ofofoxofofofofofo] T T T[T TT]

s

—
OP code CCR Jump address
CCR CCR C:
N: } Not affected.
Z:

JNS

Assembler [<label>] AJNSA <constant> [A <comment>]
syntax
Example JNS A LABL?

Operation

This instruction produces a jump if a negative flag of the CCR is set|
C) : label or address of the destination (address=0 " 486)

Even if an interrupt is requested under a jump condition, it is not
accepted before the next instruction is completely executed.
(Interrupt wait state)

Instruction

code 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
[1]o[1]ofofoJo 1 ofofofofol T T TTTTT]
OP code CCR Jump address
CCR CCR C:
N: } Not affected.
Z:

HITACHI 205

JZS

Assembler
syntax [<label>] AJZSA <constant> [A <comment>]
Example JZS 4 LABL3
©)
Operation This instruction produces a jump if a zerc flag of the CCR is set.

C) : label or address of the destination (address=0 n 486)

Even if an interrupt is requested under a jump condition, it is not
accepted before the next instruction is completely executed.
(Interrupt wait state)

Instruction
coc 2

21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1[o[1TofolofoJofofofofo[[T [[[[[]]
-

0P code CCR Jump address

CCR

CCR C:
N:} Not affected.
Z:

JSR

A bler
ssemb-e [<label>] AJSRA <constant> [A <comment>]
syntax
Example JSR A Le%}4

Operation This instruction produces a jump to subroutine.
The contents of the PC is pushed onto the stack and the jump
address is transferred to the PC.
Jump address PC (9 bits) J4 STACK 0 STACK IJ
C) : label or address of the destination (address=0 v 486)
Even if an interrupt is requested during execution of this
instruction, it is not accepted before the next instruction
is completely executed. (Interrupt wait state)

Instruction

code 21 20191817 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
[1]o[1o[1]ofofofofofofofo] [[[[| [[[]
—_—

0P code CCR Jump address
CCR CCR C:
N:} Not affected.
Z:

206 HITACHI

JNZ

Assembler
syntax [<label>] AJNZA <constant> [A <comment>]
Example JINZ A LABLS
©
Operation This instruction produces a jump if value in the RC is not O.
() : label or address of the destination (address=0 v 486)
Even if an interrupt is requested under a jump condition, it is
not accepted before the next instruction is completely executed.
(Interrupt wait state)
Instruction
code 212019 1817 161514 13121110 9 8 7 6 5 4 3 2 1 0
[1Jof1fof1]1]ofofofofofofo] [[[T[]]]
S
OP code CCR Jump address
CCR CCR C:
N: } Not affected.
Z:
A bl
ssembler [<label>] AJNZMA <constant> [A <comment>]
syntax
Example JNZM A L%%LQ
Operation This instruction produces a jump if value in the RC is not O,
and decrements the RC simultaneously.
(:) : label or address of the destination (address=0 " 486)
Even if an interrupt is requested under a jump condition, it is
not accepted before the next instruction is completely executed.
(Interrupt wait state)
Instruction ’
code 212019 1817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
foifolnunfofofofofofo[[T [[[[][]
—
OP code CCR Jump address
CCR CCR C:
N: } Not affected.
Z:

HITACHI 207

JMP

Assembler
<
syntax [<label>] AJMPA <constant> [A <comment>]
Example JMP A LABLY
Operation This is an unconditional jump instruction.

C) . 1label or address of the destination (address=0 " 486)
Even if an interrupt is requested during execution of this
instruction, it is not accepted before the next instruction
is completely executed. (Interrupt wait state)

Therefore, the instruction which always wait for an interrupt
cannot be used as Interrupt wait instruction.

ex. LABLAJMPALABL

Instruction
code

21 20191817 16 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1Jo[1ToJoToJoToJo o ofofo] T T T T T[] 1]
_ N———

OP code CCR Jump address

CCR

CCR C:
N: } Not affected.
Z:

208 HITACHI!I

TFR

A bler
ssembie [<label>] ATFRA <register 1>, <register 2> [A <comment>]
syntax g
Example TFR A A,STR
@

Operation

This instruction transfers data between register.

C) : Source register
C) : Destination register

Data is transferred from register (:) to register C).
If data is transferred to an accumulator, an exponent data in
the accumulator may be changed.

38 kinds of transfer instructions (C)“‘QB) are described
from the following pages.

HITACHI 209

Transfer (D
Expression TFR AA,STR
Operation The contents of bit positions 3 through 7 of ACCA are transferred

to the corresponding bit position of the STR to enable or disable
an interrupt. The contents of ACCA remain unchanged.

Mantissa Exponent
15 7 0 3 0
seen [ITTITTTLIIIITIT) LEDT]
VLl

0

BE

ISl IP

STR Mp%m

Instruction
code

21 20 19 18 17 16 15 14 13 12 11 10 9
|1I1!OIOIOIOIOIOIOIOIOIOIOIOIO|°|°|°|°}°J°J°!

N
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer (2

Expression

TFR AB,STR

Operation

The contents of bit positions 3 through 7 of ACCB are transferred
to the corresponding bit position of the STR to enable or disable
an interrupt. The contents of ACCB remain unchanged.

Mantissa Exponent
15 7 0 3 0
seee [[T TIITITTTTTT) [CLLT]
A
7 0
STR EIF [Iso Igi| Ip|ln SOF“SIF{PF“

Instruction
code

21 20 19 18 17 16 1514 13 12 11 10 9

(A1 o[o]o] OJOIOIOIIfOIOIOIOIOiOIOIOIOIOIOIOI

OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

210 HITACHI

Transfer 3

Expression TFR AA,CTR
Operation The contents of bit positions 0 through 7 of ACCA are transferred
to the corresponding bit position of the CTR. This instruction
determines a data transfer mode and controls the status of the
BIT I/0 and TxRQ pins. The contents of ACCA remain unchanged.
Mantissa Exponent
15 3
ACCAUIHHHHHOIOIH 1]
Lo
0
R
Unused bits of the CTR (bit 2,3,6) must be set to O.
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9
code r1[110|0|0|0|o|1|0]0\0|0|o|0]0|0{0|o]0|0\o|01
N
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer (@
Expression TFR AB,CTR
Operation The contents of bit positions 0 through 7 of ACCB are transferred

to the corresponding bit position of the CTR. This instruction
determines a data transfer mode and controls the status of the
BIT I/0 and TxRQ pins. The contents of ACCB remain unchanged.

wer [TTTTTT] \1!01 litololloJ (T

CTR

BIT TX
170 (OVFP,DMA

Unused bits of the CTR (bit 2,3,6) must be set to 0.

Instruction
code

21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5
[llliol0|0|010i1|0!1|0|0|0|0|0|0101010IO\OIOl
—

OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

HITACHI 211

Transfer (5

Expression

TFR AA,RC

Operation

The contents of bit positions 10 through 15 of ACCA are transferred
to the corresponding but position of the RC.
The contents of ACCA remain unchanged.

Mantissa Exponent
15 0 3 0

seea [[I JIIITOITIITT] LLELT]
Ll

“15 10

[TTTTT]

RC

Instruction
code

21 20 19 18 17 16 1514 13 12 11 10
IllllOIOIOIOI1IO|OIOIOIOIOIOIOIOIOIOIOIOIO’OJ

OP code

Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer 6
Expression TFR AB,RC

Operation

The contents of bit positions 10 through 15 of ACCB are transferred
to the corresponding bit position of the RC.
The contents of ACCB remain unchanged.

Mantissa

Exponent
15 0 3 0
scen | | [[[TTTTTTTTTTT) [CIIT]
UL
15 10
e [TTTTT)
Instruction 21 20 19 18 17 16 1514 13 12 11 7
code L}J1]0[0|o|0|1|0[0]1]01o[0|o|o[0]0|0|0[0{0|0|
OP code Selects Unused Selects
Acca/B RAM pointer A/B
CCR CCR C:
N:

} Not affected.
Z:

212 HITACH!

Transfer (O

Expression TFR AA,OR
Operation The contents of bit positions O through 15 of ACCA are transferred
to the corresponding bit position of OR.
The contents of ACCA remain unchanged.
Mantissa Exponent
15 0 3 0
seen (LTI IIIIITITIIT) LT
A 2 2 T 2 T A A A
15 0
oo [JITTLITITTITLTT]
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 5 4.3 2 10
code [1[1]ofofo]1]ofoo]olo]o lOIOIOIOIOIOIOIOIOIOI
N
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer ®
Expression TFR AB,OR
Operation The contents of bit positions 0 through 15 of ACCB are transferred

to the corresponding bit position of the OR.
The contents of ACCB remain unchanged.

Mantissa ‘Exponent

0 3 0

e

15

o [TTTTTIIITIITIT1]

Instruction
code

21 20 19 18 17 16 1514 13 12 11 3
[llIIOIOIOMOIOMIIOIOJOIOIOIOIOIOIOIOIOI?J

OP code Selects

Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected
Z:

HITACHI 213

Transfer

©)

Expression

TFR AA,RO

Operation

The contents of bit positions 10 through 15 of ACCA are
transferred to the corresponding bit position of the ROM pointer.
The contents of ACCA remain unchanged.

An unused MSB of the ROM pointer must be set to O.

code

Mantissa Exponent
15 7 0 3 0
se [T TTITTIIIITT] L]

Ll
15 10

ROM

pointer

Instruction 21 20 19 18 17 16 15 14 13 12 11 8

11 oTo[o]1]o]1]o o]0 0]o]o

7
oo o 0T o]0]
.

VS

OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer
Expression TFR AB,RO

Operation

The contents of bit positions 10 through 15 of ACCB are
transferred to the corresponding bit position of the ROM pointer.
The contents of ACCB remain unchanged.

An unused MSB of the ROM pointer must be set to O.

Mantissa Exponent
15 7 0 0
sees [[T [T [ITT[]]] [T}
L
15 10
ROM
pointer

Instruction
code

21 20 19 1817 16 1514 1312 11 10 9 8 7 6

HIJOIOIOIIIOIIIOIl}0!0JOIOIOIOIOJO!OIO’OIOI

OP code Selects Unused SEIQCtS
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

214 HITACHI

Transfer (1

Expression

TFR AA,RA

Operation

The contents of bit positions 10 through 15 of ACCA are
transferred to the corresponding bit position of the RAM pointer A.
The contents of ACCA remain unchanged.

Mantissa Exponent
15 0 3 0
scea [JTTTTITTILIIIIT) LT
Ll ‘
RAM 15 10
Instruction 21 20 19 18 17 16 1514 13 12 1110 9 8 7 6 5V4 3
code [1]1]o]o]o]1]1]o0]0 0}0[0]0|0!0|0|0|0|0[0|0\
—— I
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer (2
Expression TFR AB,RA

Operation

The contents of bit positions 10 through 15 of ACCB are
transferred to the corresponding bit position of the RAM pointer A.
The contents of ACCB remain unchanged.

Mantissa Exponent
15 7 0 3 0

soo [[TTTTTITITILLITT LLLL]

el

15 10

RAM
pointera [[[[[]

Instruction
code

2120 19 18 17 16 1514 1312 1110 9 8 7 6 5 4 3 2 1 0
[1[1]oTolo[1[1Too 1o oo o o o o o]0 o]0]o]
1

OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

HITACHI 215

Transfer (3

Expression TFR AA,RB

Operation The contents of bit positions 10 through 15 of ACCA are

transferred to the corresponding bit position of the RAM pointer B.
The contents of ACCA remain unchanged.

Mantissa

Exponent
15 7 0 3 0
s [[T [(OITT)
L
15 10
RAM
pointer B
Instruction 21 20 19 18 17 16 15 14 13 12 11 7 0
code LDIOIOIOIII1IOIOIOIOJOIOIOIOIOIOIOIOIOIOW
T
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer (19
Expression TFR AB,RB

Operation The contents of bit positions 10 through 15 of ACCB are

transferred to the corresponding bit position of the RAM pointer B.
The contents of ACCB remain unchanged.

Mantissa Exponent

wer ([T TITITTITIT] CIIT)
N AN

15 10

potncer sl | | [[T]
pointer B

Instruction 21 20 19 18 17 16 1514 1312 11 10 9 8 7

code LLIOIO!OI1IIIOIOIELOJOIOIOIOIOIO!OIOIOTT

OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

216 HITACHI

Transfer (9
Expression TFR AA,CCR
Operation The contents of bit positions 13 through 15 of ACCA are

transferred to the corresponding bit position of the CCR.
The contents of ACCA remain unchanged.

Mantissa Exponent
15 7 0 3 0
seea JTTTTTTITILLITT) LT
VL
15 13
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 5 2 1 0
code [t[1ofofo[1]1]1]o]o]0 J010|0|0|0l0l0|010J lIJ
0P code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } The contents of ACCA
Z:
Transfer (6
Expression TFR AB,CCR
Operation The ‘contents of bit positions 13 through 15 of ACCB are

transferred to the corresponding bit position of the CCR.
The contents of ACCB remain unchanged.

Mantissa Exponent
15 0 3 0
sees [[TITTIITIIILIIL) LELL
CCR
Instruction 21 20 19 18 17 16 15 14 13 12 11 4
code lllllOlOIOIIMIIOI1|0|0|0|010|0|0|0|0|0|O O|
OP code Selects Unused JSelects
ACCA/B RAM pointer A/B
CCR CCR C:
N:} The contents of ACCB
Z:

HITACHI 217

Transfer ()
Expression TFR AA,SOR
Operation The contents of bit positions 0 through 15 of ACCA are

transferred to the corresponding bit position of the SOR.
The contents of ACCA remain unchanged.

seo [[TTTTTLLITITITT) [TTT)
fsl N £ [A A A t
sor [[TT T TITTLITTTTTT]

Instruction

21 20 19 18 17 16 1514 13 12 11 10 9 7 6 5 4 3 2

code [111|o|011|0|0|o[0{0|0|o|o!0[010]0|0|0!0[14J
e
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:
Transfer

Expression

TFR AB,SOR

Operation

The contents of bit positions O through 15 of ACCB are
transferred to the corresponding bit position of the SOR.
The contents of ACCB remain unchanged.

Mantissa Exponent
15 7 0 3 o
sees (| LLTPITLLITTTIT) CELT
R T T T S A S A A A3
15 7 0
sor [| [T ELLITT]]
Instruction 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6
code [1|1|0|0|1]0]0|0|011|0|010|0|0[o|0|0|0|0|0|0}
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

218 HITACHI

Transfer

Expression TFR A STR,A
Operation The contents of the STR (bit O through 7) are transferred to the
corresponding bit position of ACCA.
This instruction reads the status of the I/0 data transfer
end flag. At the completion of data transfer, PF, SIF and SOF
are cleared. 000
Lol
7 0
STR EIISO Isi| Ip| Iy sop‘sm PF
A A A A Undefined
—t——
15 7 0 3 0
seen kLWL BAITTTTTTT] [I1]]
Mantissa Exponent
Instruction 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6
code |1I1I0|1|0|0|0I0|0|0\OIOTOJOlOIOIOIOIOIOIOIOI
' A
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: 1
Z: 0
Transfer
Expression TFR A STR,B
Operation The contents of the STR (bit 0 through 7) are transferred to the
corresponding bit position of ACCB.
This instruction reads the status of the I/0 data transfer
end flag. At the completion of data transfer, PF, SIF and
SOF are cleared. 0 00
L
7 0
STR ‘ll}"lso‘lsll IPI IMFOFJSIF’ PP‘]
A A) Undefined
—_
15 7 0 3 0
sces LW TTTTTIT] [T
Mantissa Exponent
Instruction 21 20 19 18 17 16 15 14 13 12 11 8 7
code |1|1|0|1IOIOIOIOI1J0|0|0|0|0i010I0|010!O[OIOI
- o]
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.

N: 1
Z: 0

HITACHI 219

Transfer @)

Expression

TFR ACTR,A

Operation

*

The contents of the CTR (bit O through 7) are transferred to the
corresponding bit position of ACCA.

This instruction reads the status of CTR bits. A read of
bit 5 means an input from BIT I/0 pin.
7 0
CTR w/) e
A A A A A} Undefined
15 7 0 3 0
seen i [li o] B TR T) [T

Mantissa Exponent
When using the HSP emulator, the content of bit 6 may be changed.

Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 8 6 5 3 0
code [1][1]o]1 IOIOFOilIOIO]OIOIOIOIOIOIOIOIO!OIOIO‘
———
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: 1
Z: 0
Transfer @2
Expression TFR ACTR,B

Operation

The contents of the CTR (bit O through 7) are transferred to the
corresponding bit position of ACCB.

This instruction reads the status of CTR bits. A read of
bit 5 means an input from BIT I/O pin.
7 0
R/ 1/
l R A A A Undefined
—_—
15 0 3 0
s (DL AL] BT TR [
Mantissa Exponent

* When using the HSP emulator, the content of bit 6
may be changed.

Instruction 212019 1817 16 1514 1312 11 10 9 8 7 6
code p|1[0}1]0Tb[0|1[1|o]0|0|o|0|0|0]0|0|0|0|0]0|
—
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.

N: 1
Z: 0

220 HITACHI

Transfer @3

Expression TFR ARC,A
’ Operation The contents of the RC (bit 10 through 15) are transferred to the
corresponding bit position of ACCA.
15 10
e [TTTTT]
] Undefined
—_—
15 0 3 0
seea | [L[[DBRpEBDER] [TTT]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 1312 11 10 9 8 7
code [1[1]o]1 |0|011IOIOIOIOIOIOIOLOIOIOIOIOIOIOIOJ
-
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of the MSB of the RC
Z: 0
Transfer @9

Expression

Operation

TFR ARC,B

The contents of the RC (bit 10 through 15) are transferred to the
corresponding bit position of ACCB.

10

RC
A A Undefined
15 0 i
sces || [L[[P Pp i fi i [T
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 1312 11 10 9 8 7 6
code [1[1]o]1]ofo]1]o]1 JOIOIOIOIOIOIOIO!OIOIOIOIJ
—
OP code Selects Unused elects
ACCA/B

CCR

RAM pointer A/B

CCR C: Not affected.

N: The content of the MSB of the RC
z: 0

HITACHI 221

Transfer @

Expression

TFR A IR,A

Operation

The contents of the IR (bit O through 15) are transferred to the
corresponding bit position of ACCA.

ENEERENNNRNEER

R e Undefined

15 0 3 0

seex (LTI CITT]
Mantissa Exponent

Instruction

2] 20 19 18 17 16 1514 13 12 11 10 9

8 2 1 0
code MIIOIIIOMIIll0'OIOIOIOIOIOIOIOIOIOIOIO|0I
- I
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of the MSB of the IR
Z: Set if the IR is $0000.
Transfer 2o

Expression

TFR AIR,B

Operation

The contents of the IR (bit O through 15) are transferred to the
corresponding bit position of ACCB.

w LLLLLITITTTTTTTT]

VULl bbbl bbbl Undefined

15 0 3 0

sees || JTTTTTTTTTTITT) [ITT]
Mantissa Exponent

Instruction

21 20 19 18 17 16 15 14 13 12 11

code it |0|1]0]0]1]1[1|0|0[0|o[0|0]0[0]0|0|0|0]0]
- — |
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.

N: The content of the MSB of the IR.
Z: Set if the IR is $0000.

222 HITACHI

Transfer @7

Expression TFR ARO,A
Operation The contents of the ROM pointer (bit 10 through 15) are
transferred to the corresponding bit position of ACCA.
The content of the MSB of ROM pointer (bit 15) is also
transferred to ACCA, though unused.
15 10
ROM
potncer | | | | |]
Undefined
VL
15 0 3 0
scea [[| [[[Pppfieip fpp] L]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 1312 11 10 9 8 7
code [1]1of1fo]1]o] IOIOJOIOIOIOIOIOIOIOIOIOIOIOI
—
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of bit 15 of ROM pointer.
Z: 0
Transfer 29
Expression TFR ARO,B
Operation

The contents of the ROM pointer (bit 10 through 15) are
transferred to the corresponding bit position of ACCB.
The content of the MSB of ROM pointer (bit 15) is also
transferred to ACCB, though unused.

15 10

ROM
VLl Ly Undefined
15 0 3 0
aces [[[[[[pppippfipihfefe] L[]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 9]
code]1[1|0|1|ol1|0|1|1|0\0|010]0|o|o]0[010(o]olol
.
OP code Selects Unused Selects
ACCA/B

RAM pointer A/B

CCR

CCR C: Not affected.

N: The content of bit 15 of ROM pointer.
Z: 0

HITACHI 223

Transfer

Expression

TFR ARA,A

Operation

The contents of the RAM pointer A (bit 10 through 15) are
transferred to the corresponding bit position of ACCA.

15 10

RAM
pointer A
T 1T U1l Undefined
—_—
15 0 3 0
scca [[[[[[a o[y [1]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9
code [1]t]o]1]o]1]1]0]0]0 [0|o|oio]o|0|0Jo|0]0|0]d}
—
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of MSB of RAM pointer A.
Z: 0
Transfer 3o
Expression TFR ARA,B
Operation The contents of the RAM pointer A (bit 10 through 15) are
transferred to the corresponding bit position of ACCB.
15 10
RAM
Undefined
R A —
15 0 3 0
scee || [[[[[pepifafo o] [T
Mantissa Exponent
Instruction 21 2019 1817 16 1514 13121110 9 8 7 6 5 4 3 0
code Lf1|0!1!Olllli0|1I0|OIOIOIOJOJOIOIOIOIOFOIOI
J——
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.

N: The content of MSB of RAM pointer A
Z: 0

224 HITACHI

Transfer Q)

Expression

TFR ARB,A

Operation

The contents of the RAM pointer B (bit 10 through 15) are
transferred to the corresponding bit position of ACCA.

15 10

RAM
potncer 8 | | [| |]
L A A A Undefined
—
15 3 0
o [[TTITLEORRAEON [T
Mantissa Exponent
izztruction 21 20 19 18 17 16 15 14 13 12 11 10 9
¢ [ftfofr iOl1‘IIOIOIOIO|01010|0|0J0i0|0I0|0|0|
— |
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of MSB of RAM pointer B.
Z: 0
Transfer 62
Expression TFR ARB,B

Operation

The contents of the RAM pointer B (bit 10 through 15) are
transferred to the corresponding bit position of ACCB.

potneer 3L | | [[]
pointer B
LLLL oL Undefined
—— ey
15 0 3 0
aces [[[T LLLDLLpbph) L[]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 13 12 11
code |ltlIOI110!1|1|01110|0|0|0i0l0iOIOIOTOIOtOIOI
—
OP code Selects Unused Selects
ACCA/B RAM pointer A/B

CCR

CCR C: Not affected.
N: The content of MSB of RAM pointer B
Z: 0

HITACHI 225

Transfer 33

Expression TFR ACCR,A
Operation The contents of the CCR (bit 10 through 15) are transferred to
the corresponding bit position of ACCA.
15 13
Undefined
l Lo —_—
] 0 3 0
wes] RERBRBnnnnnnn [1]
Mantissa Exponent
Instruction 21 20 19 18 17 16 1514 1312 1110 9 8 7
code DIOI1f0|llll110|0IOJOFOIOIOIOIOIOIOIOIOIOI
—
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of a carry flag.
Z: 0
Transfer 39
Expression TFR ACCR,B
Operation The contents of the CCR (bit 10 through 15) are transferred to
the corresponding bit position of ACCB.
15 13
Undefined
L _
0 3 0
scea| | [i ip i]
Mantissa Exponent
{“jtr”CtiO” 21 20 19 18 17 16 1514 13 12 11 10 9 8
oee lll1|0l1|0|1|1l1|I[OIOIOIOIOIOIOIOIOIOIOiOIOI
— l
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: The content of a carry flag.
Z: 0

226 HITACHI

Transfer 6o

Expression TFR A SIR,A
Operation The contents of the SIR (bit O through 15) are transferred to the
corresponding bit position of ACCA.
000000O0O0O0O0O0O000O00O0O
L A A A A A A A A
15 0
s [[T ITTTTTITTI[]]
Undefined
A A A A A —_—
0 3 0
sees [[TTTIITITTIIIIE) LELL
Mantissa Exponent
The SIR is cleared after data transfer from the SIR to ACCA
Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 8 32 1 0
code |1|110[1|110|o|110|o]o|0]0|0{o[0|0\010|0|0|0|
—_— f
OP code Selects Unused Selects
ACCA/B RAM pointer A/B

CCR CCR C: Not affected.
N: The content of the MSB of the SIR

7: Set if the IR is $0000.
Transfer
Expression TFR A SIR,B
The contents of the SIR (bit 0 through 15) are transferred to the

Operation

corresponding bit position of ACCB
00000O0O0OOOOOOOOO
llsllllllllllllll(l)

sw[TTTTTTITIIILIT]]
Undefined
I —_—
15 0 3 0
sees (TTTTTTITITIIII) LT
Mantissa Exponent
The SIR is cleared after data transfer from the SIR to ACCB
Instruction 21 20 19 18 17 16 15 14 13 12 11 10 9 6 5 4 3 2 0
code [1]t]of1]1]o]o Il\IIOiOlOIOTlOIOIO\OIOIOI H
—— [
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR C: Not affected.

CCR :
N: The content of the MSB of the SIR.

7Z: Set if the IR is $0000.

HITACHI 227

Transfer)

Expression

TFR AA,B

Operation

The contents of ACCA are transferred to ACCB.
based on the fixed point representation.
The contents of ACCA remain unchanged.

This operation is

Exponent

15 Mantissa 0 0
reel [[TTTTTTTTTTTTT]

D A A Undefined

o [TTTTTITITIIITT] (17T

Instruction

21 20 19 18 17 16 1514 13 12 11 1(

0 9 8 7 6 5 4 3 2 1 ¢
code [e[[xTo[1To1]o[o[o[o o o o o o o o o]o]
R |
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: Set if ACCA is negative.
Z: Set if ACCA is $0000.
Transfer
Expression TFR AB,A

Operation

The contents of ACCB are transferred to ACCA.
based on the fixed point representation.
The contents of ACCB remain unchanged.

This operation is

e (LTI TIITII0L] [TTL)
N T A A At A A A A Undefined

3 0

LT

:
eer (LTI T TTIT LI TTTT)

Instruction 21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0
code (i fo[x[xTolxToTo[1o oloTo[oToToTo o [s o To]
_— T
OP code Selects Unused Selects
ACCA/B RAM pointer A/B
CCR CCR C: Not affected.
N: Set if ACCB is negative.
Z: Set if ACCB is $0000.

228 HITACHI

INCRA

Assembler
syntax [<label>] AINCRA [A <comment>]
Operation This instruction increments RAM pointer A.
(RAM pointer A)+1 - (RAM pointer A)
Note: RAM pointer A Model
151413121110
RA
A 4... Decimal point
MSB LSB
I“ztrUCtiO“ 21 20 19 18 17 16 1514 13 12 11 1
coce L}MOMMNMMMNNMNWNMNWNNM
OP code Unused gi;e;gfnter A/B
CCR CCR C:

N: }Not affected.
Z:

INCRB

AsS 1

ssembler [<label>] AINCRB [A <comment>]

syntax

Operation This instruction increments RAM pointer B.

(RAM pointer B)+1 - (RAM pointer B)

Note: RAM pointer B Model
151413121110
RB
A 4. .. Decimal point
MSB LSB
Instruction
code 21 20 19 18 17 16 15 14 13 12 11 10 9 5 10
[1]1]1]0 [Tolo{o}oLoj 000000|00 :1
- d Selects
OP code Unuse RAM pointer A/B
CCR CCR C:
N:} Not affected.
Z:

HITACHI 229

INCRO

Assembler
syntax [<label>] AINCRO [A <comment>]
Operation This instruction increments ROM pointer.

L(ROM pointer)+l - (ROM pointer)

Note: ROM pointer Model

151413121110

RO
4 A... Decimal point
MSB LSB
Instruction
code 21 20 19 18 17 16 15 14 13 12 11 10 8 7 0
FMMMNMMMNWMNMNMMNWWNMW
OP code Unused zz;e;ginter A/B
CCR CCR C:
N: Not affected.
Z:
DECRA
Assembler
syntax [<label>] ADECRA [A <comment>]

Uperation This instruction decrements RAM pointer A.

(RAM pointer A)-1 -~ (RAM pointer A)

Note: RAM pointer A Model

151413121110

RA !
A A- .. Decimal point
MSB LSB
Instruction
code 21 20 19 1817 16 1514 1312 1110 9 8 7 6
IELDIMMNMNNMNMMMWMWMNW
Selects
OP code Unused RAM pointer A/B
CCR CCR C:
N: Not affected.

Z:

230 HITACHI

DECRB

Assembler
syntax [<label>] ADECRB [A <comment>]
Operation This instruction decrements RAM pointer B.
I (RAM pointer B)-1 ~ (RAM pointer B)
Note: RAM pointer B Model
151413121110
RB
a A... Decimal Point
MSB LSB
Instruction
code 21 20 19 18 17 16 1514 13 12 11 1 7 3 1
[THHMHMMMMMMMMMMMMMMMLJ
Selects
OP code Unused RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

DECRO

Assembler

[<label>] ADECRO [A <comment>]

syntax
Operation This instruction decrements ROM pointer.
(ROM pointer)-1 ~ (ROM pointer)
Note: ROM pointer Model
151413121110
RO
4 A- - - Decimal Point
MSB LSB
Instruction
code 21 20 19 18 17 16 15 14 13 12 11 10 4 3 2 1 0
rhthMMhMMMMMMMMMMMMMJ
op 4 Selects
code Unused RAM pointer A/B
CCR CCR C:
N: } Not affected.
Z:

HITACHI 231

DECRC

Assembler
syntax [<label>] ADECRC [A <comment>]
Operation This instruction decrements the RC.

l (RC)-1 > (RC) J

Note: RC Model
151413121110
RC
A 4... Decimal Point
MSB LSB

Instruction
code

21 20 19 18 17 16 1514 13 12 11 10 9 8 7 6 0
]1|1|110|1|o|1|0!0|ol0]0|0|0]0folololo|o|0|0‘

Selects

RAM pointer A/B

OP code Unused

CCR

CCR C:
N:} Not affected.
Z:

RTI

Assembler
syntax

[<label>] ARTI [A <comment>]

Operation

This instruction performs a return from interrupt.
The PC data is recovered from STACK.

The RTT instruction clears Interrupt mask flag (Iy) of the STR,
which enables an interrupt.

Even if an interrupt is requested during execution of this
instruction, it is not accepted before the next instruction is
completely executed. (Interrupt wait state)

Instruction
code

21 20 19 18 17 16 1514 13 12 11 8 7
illllll1IIIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOIOM

OP code Unused

CCR

CCR C:
N:} Not affected.
Z:

232 HITACHI

RTN

Assembler
syntax [<label>] ARIN [A <comment>]
Operation This instruction performs a return from subroutine.

The PC data is recovered from STACK.

PC (9 bits) STACK 0 STACK 1

Even if an interrupt is requéste& during execution of this
instruction, it is not accepted before the next instruction
is completely executed. (Interrupt wait state)

Instruction
code 21 20 19 18 17 16 1514 13 12 11 10 9 8 6 5 4 3 2 10
|llIM111|0|0|IIOIOIOIOIOIOIOIOLOIOIOIOIOJ_J
OP code Unused
CCR CCR C:
N: ¢ Not affected.
Z:

HITACHI 233

5.2.1 Description of Operand

<Operand @ >

Pointer Addressing Mode

Expression <mnemonic> A <operand (:)>

E 1 FADA A YA, A, XY(1,3), RA,RO+
xample mnemonic @ 4
Function C) ALU operation (selection of inputs)

Symbol ALU Operation Note Assigned Bits
16 15
PA (P, ACC) ~ ACC Either ACCA or ACCB 0 0
is selected.
YA (Y, ACC) ~ ACC Either ACCA or ACCB 0 1
is selected.
PX (P, X) - ACC Either ACCA or ACCB 1 0
is selected.
YX (Y, X) ~ ACC Either ACCA or ACCB 1 1
is selected.

() : Arithmetic operation

P i multiplier product with pipeline delay of previous
instruction cycle (Pp+1)

X : X-Bus output

Y : Y-Bus output

For details of arithmetic operation, see description of each
instruction.

(:) Write to the data RAM (selection of source register)

Assi it
Symbol |Write Operation Note Si;gHEd ?i S
EE No write 0 0
A ACC > M(Y) The accumulator contents 0 1
is the result of the
previous ALU operation.
The same accumulator as
C) is selected.
D DREG - M(Y) The contents of the 1 1
DREG is the output from
the Y-Bus during the
previous instruction.

Y: Memory address specified by C) and C).

Data is written to the data RAM through the Y-Bus.

234 HITACHI

@ Read and

Write to the Data ROM/RAM/GR

(Specify the page addresses)
Symbol Read Write Assigned Bit
Y X-Bus Y-Bus Y-Bus | 10| 9876 543
XY (n,m) Output of | Output of Y-Bus
ROM or RAM | ROM or RAM > RAM 1 0 n m
-+ X-Bus > Y-Bus
XG(n,1) Output of Output of Y-Bus
ROM or RAM | GR > GR 1 1 n 2
- X-Bus -+ Y-Bus
(Note) The data in the data ROM/RAM/GR are read out to two buses
simultaneously, while a write into data RAM/GR is performed

through Y-Bus only.
n : page address of X-Bus output data (RAM: 0-3, ROM: 4-7)
m : page address of Y-Bus output data (RAM: 0-3, ROM: 4-7)

2 : the GR address

n must be
(4-7) conc

equal to
urrently.

(@ ROM/RAM Pointers

Effective memory

(0-3)
m if both of them specify the ROM address

addresses are generated by @ and @

Selection of . Assigned Bit
Symbol RAM Pointer Autoincrement | Autodecrement 5 il 5
RA[,RO] A - o] 01O
RB[,RO] B - 0 0 1
RA+[,RO] A Increment of Decrement of 1 0 0
RAM pointer A | RC
RB+[,RO] B Increment of | Decrement of 1 0 1
RAM pointer B | RC
RA,RO+ A Increment of Decrement of 0 1 0
ROM pointer RC
RB,RO+ B Increment of Decrement of 0 1 1
ROM pointer RC
RA+,RO+ A Increment of Decrement of 1 1 0
RAM Pointer A | RC
& ROM pointer
RB+,RO+ B Increment of Decrement of 1 1 1
' RAM Pointer B | RC
& ROM pointer

(Note) The RC is autodecremented depending on the result of
logical OR of bit 2 and 1.

: not decremented
: decremented

22y2t = 0o
22y2t =1

A write to the data RAM ((2)) is performed after a read of the memory
address specified by (:) and

Precaution

HITACHI 235

<Operand > Direct Addressing Mode

Expression <mnemonic>A<operand >
FAD, P 0, 12
N I
Function C) ALU operation (selection of ALU inputs)
. Bi
Symbol ALU Operation Note Asiggned l;ts
PA (P,ACC) ~ ACC Either ACCA or ACCB 0 0
is selected.
YA (Y, ACC)~> ACC Either ACCA or ACCB 0 1
is selected.
PX (P, X) ~ ACC Either ACCA or ACCB 1 0
is selected.
YX (Y, X) - ACC Either ACCA or ACCB 1 1
' is selected.

(@ Write to the Data RAM (selection of source register)

Assi d Bit
Symbol | Write Operation Note si;gne li S
EE No write 0 0
A ACC - M(n,m) The accumulator contents 0 1
is the result of the
previous ALU operation.
The same accumulator as
is selected.
D DREG - M(n,m) The contents of the DREG 1 1
is the output from the Y
-Bus during the previous
instruction.

n and m are specified by C).
RAM through the Y-Bus.

Data is written t

GD Read and Write to the Data ROM/RAM
(specify the ROM/RAM address)

o the Data

Symbol Read Write
yibo Output of X-Bus and Y-Bus Y-Bus

n.m Output of ROM or RAM - Y-Bus Y-Bus - RAM
’ Output of the accumulators - X-Bus

n: page address (RAM: 0-3, ROM: 4-7)
m: pointer address (RAM: 0-49, ROM: 0-31)

This type of instructions do not affect the contents of the
RAM pointers (RA, RB) and the ROM pointer (RO).

236 HITACHI

<Operand ©> Pointer Addressing Mode

Expression <mnemonic> A <operand © >
FABSA A A, XY(1,2), RA,RO
Example mnemonic @ [©)

Function Refer to @ ,@ and @ in <0perand@>
In the operand@, ALU input data is limited to ACC contents.
Therefore, the description of the operand @ is omitted.

<Operand @> Direct Addressing Mode

Expression <mnemonic> A <operand @ >

FNOPA A A, 0,00
mnemonic @ [©)

Example

Function Refer to @ and @ in <0perand>
In the operand@ , ALU input data is limited to ACC contents.
Therefore, the description of the operand @ is omitted.

HITACHI 237

5.2.2 HSP Internal Data Flow

The HSP instructions permit a read or write of data memory (ROM/RAM/GR)
and arithmetic operation in a single instruction cycle. The product and
the ALU output are used in the next instruction cycle. Fig. 5.2.1 and

Fig. 5.2.2 give examples of data flow for an easy understanding.

(1) Pointer addressing mode

ex. FADA A YA , A, Xv(1,3) , RA,RO+
® © ©) ®

YA : Output of Y-Bus + ACCA - ACCA

@
() A : Write
ACCA > M(Y) Y is an address specified by the RAM pointer
) in page 3.
() XY(1,3) : Read
RAM output (page 1) - X-Bus

RAM output (page 3) - Y-Bus

C) RA,RO+ : The RAM pointer A is selected.
The ROM pointer is incremented.

The RC is autodecremented.
<Explanation of Flowchart>

L. The outputs of the MULT, the ALU and the Y-Bus of the previous
instruction cycle are loaded in the P (product), an accumulator

and the DREG respectively.

II. Operand C) (XY(1,3)) indicates that the data in page 1 is
output to the X-Bus and the data in page 3 to the Y-Bus.
In this case, the RAM pointer A is specified by operand C).
Data which is output onto the X-Bus and Y-Bus are then
transmitted to the MULT and the product will be transferred
to the P register. As the MULT always operates independently
of instructions, two read-cut data are inevitably multiplied.

The data output to the Y-Bus is also transferred to the DREG.

III. Operand C) (YA) indicates that the output from the Y-Bus and
ACCA contents (the results of the previous instruction) are

added in the ALU and a result is stored in ACCA.

238 HITACHI

Iv.

The ALU has two inputs: either output of the accumulator or of
the X-Bus is selected for one of ALU input, and either output
of the P or the Y-Bus for the other. 1In this case, 'YA'
selects and the ACCA output and the Y-Bus data for these two

inputs. They are added and the result is stored in ACCA.

C) specifies a data to be written to the data RAM. The HSP
has no store instructions in mnemonic, and operand (:) controls
a write to the data RAM. The data to be written is the accumu-
lator or DREG contents of the previous instruction cycle.

In this case, 'A' selects the accumulator as a source register.
The data is written into the address of the data output to the

Y-Bus specified in () for a read operation (page 3).

The data written to the DREG, accumulator and P register in
the above procedures can be used during the next instruction

cycle.

HITACHI 239

| OPERATION | X-BUS
|

I rResults of the

|
|
| ' |
| Previous I : | i
i | i |
| Instruction | | | DREG l 'L acc | [P]I
| |
|
]
|
|
|
1
|

I | Read of ROM/RAM
r/er

lOutput of Output of

| Input to the
| MULT

|

|

| OM/RAM/GR
|

| ! X

|

[

1

ROM/RAM

y Y

-
(Arithmetic
' (ALU)

=

I
|
|
.
[
|
|
|
|
I
T . —
|
I
|
|
|
|
I
I
!
!

' raM/cR D,)

Used in the next
instruction

The bold lines show the data flow described in the example.
@,@ and @ are the operand numbers. The contents of the P and the DREG

are reserved for a single instruction cycle.

Fig. 5.2.1 HSP DATA FLOW (IN POINTER ADDRESSING MODE)

240 HITACHI

(2)

Direct addressing mode

ex.

@
®

®

FADA A PA , A, 0,12
PA : P (product) + ACCA + ACCA

A ¢ Write
ACCA -~ M(0,12)

0,12 : Read
The data in location 12 of page 0 - Y-Bus

<Explanation of Flowchart>

I.

IT.

Iv.

The product (output of the MULT) and the outputs of the ALU
and the Y-bus of the previous instruction cycle are stored in

the P register, accumulator and the DREG respectively.

C) (0,12) indicates that the data in location 12 of page O is
output to the Y-bus. The contents of the accumulator appears
on the X-bus. These X-bus data and Y-bus data are transferred
to the MULT, which always operates independently of instruc-
tions, and then the product will be transferred to the P.

The data output to the Y-bus is also transferred to the DREG.

(D (PA) indicates that the contents of the P and ACCA (the
results of the previous instruction) are added in the ALU and
then a result is stored in ACCA. The ALU has two inputs: one
is input from an accumulator, and either output of the P or of
Y-Bus is selected for the other input. In this case, 'PA'
selects the P output. These two inputs are added and then

a result from the operation is stored in ACCA.

(@ specifies a data to be written to the data RAM. The HSP
has no store instructions in mnemonic, and operand (:) controls
a write to the data RAM. The data to be written is the accumu-
lator or DREG contents of the previous instruction cycle. 1In
this case, 'A' selects the accumulator contents.

The data is written into the address of the data output to

the Y-bus specified in () for a read operation (location 12

of page 0).

The data written in the DREG and the P in the above procedures

can be used during the next instruction cycle.

HITACHI 241

OPERATION

L L4~

I | Results of the
| Previous
| Instruction

I ' Read of Data ROM/
' RAM

Input to the

MULT

|
I
|
|
|
|
|
l
|

Fmmm ot — e — e — s = - - — = —
I Arithmetic

(aL) @

|
|
|
|
1
|
|
i
|

¥ . Write to the Data
rRaM @ 3

Used in the |
next
instruction

The bold lines show the data flow described in the example.

The contents of the P and the DREG are reserved for a single instruction cycle.

Fig. 5.2.2 HSP DATA FLOW (IN DIRECT ADDRESSING MODE)

242 HITACHI

5.3 PIPELINE CONTROL

The HSP is designed to support a high-speed product sum operation by
employing the highly pipelined architecture. The detailed description
of pipelined operation is given in the following example of program

sequence.

Example:

Suppose that the following arithmetic is executed in the HSP.
Yi = Yi-; + Ci-1 ¢ Xi-1 , Xi-1 > Xi

Then its program is:

LIA $0000 (Stores zero in the ACCA)
TFR A,RA Transfers the ACCA contents (all 'O's)>
to the RAM pointer A.

TFR A,RO Transfers the ACCA contents (all 'O's))
to the ROM pointer.

FNOPA EE,XY (4,0) ,RA+,RO+ e Outputs the data Cy (located at the
address specified by the ROM pointer
in page 4) to the X-Bus.

°

Outputs the data Xo (located at the
address specified by the RAM pointer
in page 0) to the Y-Bus.

-+ Multiplies Cp and Xq.

Increments the RAM pointer and the
ROM pointer .

FADA PA,D,XY (4,0) ,RA+,RO+ P(Co-Xg)+ACCA(Yq) > (ACCA(Y1)
..... C) e Outputs the data Ci; (located at the
address specified by the ROM pointer
e

in page 4) to the X-Bus.

Outputs the data X; (located at th
address specified by the RAM pointer
in page 0) to the Y-Bus.

+ Multiplies C; and X;.

e Xy * X1

FADA PA,D,XY (4,0) ,RA+,RO+

Fig. 5.3.1 shows the sequence of this example.

HITACHI 243

Instruction () adds the previous product (Cg-Xy) to the
the ACCA (Yo) and transfers its result to the ACCA (Y1),
and X; are read from the data ROM or the data RAM on the

Y-Bus respectively, and are multiplied. Data X; is also

contents of
while data C;
X-Bus and the

stored in the

DREG and is written into the location of ¥, which after X, is read

out.

As described above, the HSP appears to take only a single instruction

cycle (250ns) for product-sum operation owing to the pipelined multi-

plication and ALU operation.

Instruction cycle
(250 ns)

Input clock memmﬁ

Internal

clock @, —t l l__ - _] L_m__“_J L——;wi

Instruction load //;71 p——

Data memory read :l \1@
%o Tk

Data memory write |:| ! L

Co 1Cy

v
Multiplication l47 Co+ Xo =0 % =—

(MULT) \
N B
Addition (ALU) | l ¢ Yo H==N==)
)
Y =Y, +Cio, X, 10X L5X

Fig. 5.3.1 PIPELINE CONTROL

244 HITACHI

Fig. 5.3.2

cycle.

One instruction (250ns)

shows the sequence of the each register in a single instruction

Internal
clock ¢y
(4 MHz)

PC

Output of
instruction
ROM
Instruction
register
Addressing
ROM/RAM

Input of the
ALU/MULT

Output of
the MULT

Input of the
ALU

ACC (Output
of the ALU)

Output of
registers

DREG.

1/0 of the
DREG.

1/0 of ROM/RAM;

|

]

(Inst.Reg

I
|
|
|
|
|
I
|
T

)

{ ROM/RAM Add,Input)

to

Read ! Write

Output
X,Y Bus]

(X—IReg,Y—Reg
T

C

ALU

|
ACC

)

T
]
{ SIR, SOR

L OR. ete.)

|
I
I
i
I
Read !

//////’

|
|
Il
DREG
]
|

Order of
Operations

Decord

I
Execute (ALU)

(fetch)

Execute (MULT)

Fig. 5.3.2 PIPELINED OPERATION

HITACHI 245

SECTION 6
PROGRAMING TECHNIQUE

.1

PROGRAMMING TECHNIQUE

BIQUAD FILTER
This section describes an example of Biquad Filter.

In this example, a 16-bit two's complement data is output from the SIR
and dealt in the arithmetic operation in the fixed point representation
and finally set to the SOR. The program of Fig. 6.1.4 illustrates
operations in a single sampling period and the filter output can be
acquired by repeating this program every sampling period. In the
Biquad Filter, one stage consists of 6 steps. As each step takes 250
ns in the HSP, one stage takes 1.5 ps (250 ns X 6), which permits a
max. 82 stages of filter in case of 8 kHz sampling. However, a single

filtering stage needs four coefficients from the data ROM of 128 words,

which limits the number of stages to 32.

Arithmetic operation
in the filter

Wn = Xn+ Al kWn-1+A2*Wn -2
Yn = Wn+B1t *Wn-1+B2*Wn-2
Wn-1—>Wn-2, Wn—=>Wn-1

Fig. 6.1.1 A STAGE OF BIQUAD FILTER

Filter A stage A stage A stage Filter
input —=jof filter of filter[——=--—"jof filtery— " output

2 o)

Fig. 6.1.2 BIQUAD FILTERS IN A SAMPLING PERIOD

HITACHI 249

—
Wait for I
data input

Data input
(through the SIR)

Output of one sample data

A filtering

The example of this section
stage

outputs only one sample
data.

A filtering
stage

|

1
A filtering
stage

0 Pt w3

Data output
(through the SOR)

Fig. 6.1.3 A SAMPLING PROCESS WITH BIQUAD FILTER

LIRA 0 ;0 — RAM pointer
LIRO 0 ;0 — ROM pointer
TFR SIR,A 7 SIR — ACCA
LIRC n » n — RC

L1 NOPA EE,XY(4,0),RA ; Al *Wn-

ADA PA,EE XY(5,1),RA ; A2%Wn-2 ACCA+P — ACCA
ADA PA,EE,XY(7,1),RA ; B2¥Wn-2 ACCA+P — ACCA
ADA PA,A, XY(6,0),RA ; Bl1¥Wn-1 ACCA+P — ACCA,
Wn-1 — DREG, ACCA — Wn-]
ADA PA,D, XY(7,1),RA+,RO+ ; DREG — Wn-2’' ACCA+P — ACCA,

RC DEC

RAM POINTER INC,ROM POINTER INC
JNZ L1 ;Jump to L1 if (RC)x0
TFR A, SOR ; ACCA — SOR

Fig. 6.1.4 AN EXAMPLE OF PROGRAM SEQUENCE OF BIQUAD FILTER

250 HITACHI

Table 6.1.1 MEMORY MAP

Page address
Data memory
0 1 2 3 4 5 6 7
00 Wn -1 | Wn -2 A, A, B, B,
Pointer| 01 Wn' -1 | Wn' -2 Af A/ B/ B;
address 02 Wn” -1 | Wn" -2 AY AY B/ B/
03

6.2 TRANSVERSAL FILTER

This section describes a design of Transversal Filter.

In this example, a fixed point 16-bit two's complement data is output

from the SIR and transformed to the floating point data to be dealt in

the arithmetic operation and finally input to the SOR after transformed

to the fixed pointer data.

A sampling operation containing 32 taps of Transversal Filter is

performed in sampling period of 10.5 us.

Arithmetic operation

Toput Wa p W“"@ Yoe = oo in the filter
Q=2 Ci*kWyo 4y
Cy C, Cs Cn -
*CX) *@ Wiy =Wt (= 1~N)
>E‘Ltp“t N=32
p)
Qn

Fig. 6.2.1 TRANSVERSAL FILTER
LIRO 0 ;0 - ROM POINTER
LIRA 0 ;0 — RAM POINTER
LIRC 31 ; 31 - RC
TFR SIR,A ; SIR = ACCA
FLTA EE, 6,00 ; Fixed —» Floating
FCLRA A,0,00 ;0 — ACCA,ACCA — Wn
FRPTA EE,0,00 ; Next inst. repeat
FADA PA,D,XY(4,0) ,RA+, RO+ | ACCA+Ci *Wn-i+1, Wn—i +1— Wn -i

RC DEC

FADA PA,EE, 0,00 ; ACCA+ C32%xWn -32%Wn-31
FIXA EE, 6,00 ; Floating — Fixed
TFR A, SOR ; ACCA — SOR

Fig. 6.2.2 AN EXAMPLE OF PROGRAM SEQUENCE OF TRANSVERSAL FILTER

HITACHI 251

Table 6.2.1 MEMORY MAP

Page address

Data memor
Y 0 3 4 5 6
00 W n C, %
01 Wn-1 C,
[Pointer! 02 Wn-2 Cs
address| : : :
31 Wn -32+1 Cse

252 HITACHI

* Scaling constant

SECTION 7
HSP APPLICATION

HSP APPLICATION

The HSP provides the instruction ROM, data ROM and data RAM, which
permits stand-alone operation. Moreover, the HSP can be used as a
peripheral device of an 8 or 16 bit microcomputer using parallel I/0

ports which supports large systems.

This section describes two cases when the HSP is used as a stand-alone

system and as a peripheral LSI of an 8-bit microcomputer.

e Stand-alone system
Stand-alone system is illustrated in Fig. 7.1.

Stand-alone system permits filtering operation through the serial I/O
ports. In this case, CS must be set to high to disable parallel I/0
ports. For details of unused pins in stand-alone operation, see

'The Handling of HSP Unused Pins' at the end of 2.1.

e Connection with an 8-bit microcomputer HD6800

A connection of the HSP and an 8-bit microcomputer HD6800 is illustrat-
ed in Fig. 7.1. The HSP is designed to interface with the HD6800
through parallel I/0 ports. An microcomputer permits the several HSPs

to be operated at the same time.

While the CS pin is active (CS=0), the status of FO to F3 and R/W must
be fixed to high or low. The unfixed status of FO to F3 and R/W may
cause a malfunction. The cycle time of a microcomputer should be 1 us

(f=1 MHz).

BIT I/0 and TxRQ can be used as interrupt signal to a microcomputer.

HITACHI 255

g L — = SIEN SOENfe———— J L
SICK SOCKf+———— —nnn..

CSl—1

all "0”"=—=X1F, —;

(a) Stand-alone system

J"DBE Do - >

CS HSP SI«—@—-
Fy_ SIENfe——
Ao - 0—3
6800 V"M‘; R SICK—
R/W]| IE SOCKf—
Py RES SOENf+———
Bit .70
RES |~
1RQ | KAF—2——Dy+ SO%
©n 8
jan
||
Dl g
<ol £
<
24 LEE |2 DBE 4,
—leSle> o] <]

(b) Connection with an 8-bit microcomputer

Fig. 7.1 SYSTEM CONFIGURATION

e Connection with an 8-bit microcomputer HD6303

Fig. 7.4 gives an example of the system consisting of the MPU (HD6303R),
the HSP (HD61810) and memory.

The HSP provides an interface with the MPU and memory through serial
input ports and parallel I/0 ports. The serial output port is not

used.
A Z

e Bus timing of parallel I/0

The bus timing of the HD6303R is 1 MHz. The multiplex mode is used.
The Chip Select (CS) signal of the HSP can be also used as the address
strobe (AS) signal of the HD6303R. The data transfer of the PC and the
TR through the HSP parallel I/0 ports takes 2 cycle time because CS

needs adequate time to set up.

256 HITACHI

@ Bus timing of serial input

A 12-bit A/D convertor of 10 kHz sampling is shown in Fig. 7.4. Though
Fig. 7.4 shows only an A/D convertor, the actual A/D convertor needs

a sample and hold circuit additionally.

If the input is not two's complement data, it needs a transformation by
software. Moreover, if the input data is less than 16 bits, the lower

bits should be cleared to '0O' by software.

Constant frequency 200 kHz must be provided for serial clock. SIEN

signal is generated from the EOC (End of Conversion) signal.

$FFFF
2764
$E000
2764./6264 ’_\4__])
$C000 $9008 TR EN?SFEB
7
Unused
$A000 6
HSP 5
| PRt ;
$ 8000 tr%;gfer,
3| ranaEar(V)
Unused transteri=y
$ 6000 2|cransfer (L)
1
$ 4000 _E‘ii_ $9000
Unused Two bytes of the PC/CTR is transferred
$2000f sequentially.
6264 (ex. STD $9008, STX $9004)
$0000 However, the first half is dummy.

Fig. 7.2 HD6303 ADDRESS MAP IN THE APPLICATION CIRCUIT

HITACHI 257

When data is input/output

N I S R O I O
TS I l ; ! When reading or writing

------------ two bytes of data
sequentially

A K

When the PC/CTR is written

s 1 L

& 1 —

1 B
(-

DO.\,D7 ﬂ m

Dummy PC/CTR data
The MPU writes two bytes of data in the PC/CTR sequentially (ex, STD, STX)

Fig. 7.3 BUS TIMING

258 HITACHI

WV¥9VIA 110D¥ID NOILVDITddY

#L *31d

-
d
a =
cte)
rQ) aﬁ
Ud "1
AT qv 50—
s -
1] S+ ° a LIVH
SSA (2/1)VhLST
| ————0CE=
-
S
(=2
PERSIVVAR(AR |37} m W.MM{\II\\lIl\FIARHHH\AYAT\II
=3
=
Z
o
| ~ LSl
NHO
STy Weu
MIIS T wos ¢ sTeaaydraad 19yjo
NdIS T Tog| NHIS ON g 10 SJSH @42 of
s T | ™
¢ e UL - SUY
0/1 | " S
Lo | Ho/ 1814 N9t
H s RO
[ANPAZ 0Z' |%Eimucma
L M U1 . 14

%!
v

sty ~ 0y

AT

8¢

S+

Ud H1O Ss
) W A
10 a
At TVIXE Wy
@/ VLS ol 2 3 Lz
WIX 7
5+
e |5 S o0t
IAN [
Ul g | SV O o1
A918 (g | S O aais
i =~ say
ta sau |z T say
T %
®V202ST
ALY S

d¥€0€90H

\L
|2 o/1 ®aEQ

-
T013U0D
gx A0t 19119AU0D (/Y
S+
ord
d VT W
2t
e o — |5
vid IM% —
std gy — >
9td —
d m -
8 x 101 %
S+
L
00p = Ewmwwcmu
12 +

HITACHI 259

—O 1uN)sandut

TeUIa]
—x3q

1001
1002
002

1007

198 @

— o— El
oy oy

k13

i

o1

Vi v iduy
o %

L
anNd

6 UC\/
o 06281

o+ €628

W8
vg0€al *pa1 ¢ oD 0k803 edua UOYTIN

agy0-0X0 “PIT TAPSUTA :0S0

L L
anNd
Wy ZHINGE
3 2s0
WU =~
wnTeluR) 446 &l 00p —
g g " JZrunteauel
g+ o — fg-g

TEOTWAYD H
- AS
"Ly f Lasad

Sday

2e181

3
®18gy,0z51% 1L

€a
S+

PR

3TnOITO 39SY

(p,3u0)) WVEOVIA IINO¥ID NOILVOITddY %L "3Td

T ‘80
isje]
°sd
—]~ °q

dv929NH/
DY9LZBYNH DY9YLTZSYNH dy929WH
vi vi
aNd ano anod
00 ol 0 00 oy 1
1110 ._; 6 10 v mw“u m«
20 2 V| 20 2V £0/1 e Ve 2
Tk e 2 WSy
v 9 S0/ 1 v
7] 50 < < 1] 0 ¥ S A
. i Wi o VRN
L 6L L 6l g L 61 € L
=l 22 SV w| 2 N.M W o ‘80 oV vz 6)
E— J— 0V ——
nod M_ .«N"J 7l M& M v 7l am M__«_waf
B on ddn | & ar) % %%> onddp] % @ 2| oo% t on |7 P
82| 92| 1 8z (92| 1 82 |92 | 1
S+ S+ 4 E
+ + +
unfeljuel ﬁ wnTeluel unyeluel
geg g ¢ e-¢ e oy
U q0
md
- G =
) md

HITACHI 261

(P,3u0)) WVYOVIA IINDYID NOILVOITIddAY ¥°L 814

NAIS

100 IVIYdS

004

LITANOD LUYVIS
e Y A O O [TR

(8urrdwes zHNOT ¢S3TQ-ZT) SUTWI] UOTSIBAUO) (-03I-Y

MIIS
S+
i Ji | m&k
sandut B3Ep TETI9S 193Je 013Z 03 ¥0 Al 1O U aND d1d
®I8p 1TQ-9T JO SITq 4 I9MOT 198 12 W= 2 W
s3xod InduTt [BTIASS JSH 924l of NAIS [} a [¥] a Z|00d NI 30070
(C/1)VPLST (2/1)VFLST
18 T Wgs 1S
a
ST- AST— : t 0
Ee I% o uado a1e o <w ¥ !
ov 4 aNo 2~ W 205
unfeijuey —| |0V O<H AGT o1 -
ng-¢ +Hn u andut
L o
ST+ SilAst+ NI DOTVNY [vt 3oTeRUY st 29151

[0ZSAV @°TAep SoTeue ue o3 jusTeATnby E:amwcmul AS+
€€ 2z

S+
103I9AU0) @/V 3ITqQ-CT

10119AU0) (/V

A00¥

1002

21002

A001

HITACHI 263

SECTION 8
ELECTRICAL
CHARACTERISTICS

8. ELECTRICAL CHARACTERISTICS
8.1 ABSOLUTE MAXIMUM RATING

Item Symbol Value Unit Note
Supply Voltage Vee -0.3 v 7.0 v
Input Voltage Vin -0.3 Vv Vet 0.3 v
Operating Temperature Range Topr 0~ +70 °C

=55 v +150 °C DIC Package

Storage Temperature Range Tstg “55 ~ 1125 o gizéazgcc
8.2 ELECTRICAL CHARACTERISTICS

B DC Characteristics (V..=5.0V#5%, Vgg=0V, Ta=0"+70°C unless otherwise specified.)

Test
It st : .
em Symbol Condition Min | Typ Max |Unit
Input "High" | OSCIE,SICK,S0CK 2.4 = |Vee+0.3] ¥
Voltage Vi
All others 2.2 = | Veet0.3] V
Input "Low" 0sC,IE,SICK,SOCK -0.3| - 0.4 | v
\4
Volt IL
ortage All others -0.3 - 0.8 \
TEST, TxAK, IE,R/W,
Cs
Input Leak ’ _
Current F"\F 5, DEND, ST ITinl |vig=0.402.4v - | - 10 | ua
SIEN,SOCK,SOEN
SICK,RES,0SC
Three State .
Current Do“D1s, SO ITrgr! |vin=0.402.4v] = | - 10 | uA
(OFF State)
Open Drain
Current TxRQ,BIT I/0 |T10m| ViN=0.47v2.4V] ~ - 10 HA
(OFF State)
" T "
Surpu MR | powys,s0,5mN | vew | ~Tom=tooua| 2.4 | = | = |
" "
?/211:2:;3 LOW™ | A1l output pins | Vor | To=l.6ma|l - | - | 0.8 |V
Vin=0v,
ézpzzitance All output pins CIN f=1MHz - - 12.5 pF
P T,=25°C
Current Not port
Dissipation Iee loading 50 100 mA

HITACHI 267

B AC Characteristics

® System Clock (Vee=5.0Vi5%, Vgg=0V, Ta=0"+70°C unless otherwise specified.)

Test . .
Item Symbol Condition Min | Typ Max | Unit

Clock (0SC) cycle deye 61.5{62.5| 70.0 | ns
dun 20 | - - | ns

Clock (0SC) Pulse Width
dWL Fig. 8-1 20 - - ns
Clock (0SC) Rise Time dy - - 10 ns
Clock (0SC) Fall Time ¢ - - 10 ns

® Serial I/0 Timing (Vcc=5.0V+5%, Vgs=0V, Ta=0"+70°C unless otherwise specified.)

Item Symbol COESiEion Min | Typ Max |Unit
Clock (SICK, SOCK) cycle SCyc 1.0 - 10.0 | us
SwH 450 - - ns
Clock (SICK, SOCK) Pulse Width
SwL 450 - - ns
Clock (SICK, SOCK) Rise Time Sy - - 25 | ns
Clock (SICK, SOCK) Fall Time Sg Fig. 8-2 - - 25 | ns
Serial Input Data Set-up Time tgpg Flg. 8-5 100 - - ns
Serial Input Data Hold Time tspH 100 - - ns
Serial Output Data Delay Time tspD - - 300 | ns
Enable Delay Time tgp 50 - - ns
Enable Set-up Time tgg 100 - - ns

268 HITACHI

® Parallel I/0 (Bus Interface) Timing (Vee=5.0V#5%, Vss=0V, Ta=0"+70°C

unless otherwise specified.)

Item Symbol Coggizion Min | Typ | Max Unit
IE cycle teye 1.0 - 10.0 us
] tyh 450 | - - ns
IE Pulse Width
twL 450 - - ns
IE Rise Time tr - - 25 ns
IE Fall Time te - - 25 ns
CS Set-up Time teg Fig. 8-3 140 - ns
— ; Fig. 8-5
CS Hold Time tey 10 - - ns
Address Set-up Time tac 10 - - ns
Address Hold Time tca 20 - - ns
Input Data Set-up Time tpsw 190 | - - ns
Input Data Hold Time tDHW 10 | - - ns
Output Data Delay Time tpDDR - - 220 ns
Output Data Hold Time tDHR 10 - - ns

@® DMA Interface Timing (Vece=5

.OV£5%, Vgg=0V, Ta=0v+70°C unless otherwise

specified.)

Test . .
Item Symbol Condition Min |Typ Max Unit
TxAK Set-up Time tas 140 - - ns
. Fig. 8-4 _ _
TxAK Hold Time tAH Fig. 8-5 600 ns
TxRQ Delay Time tR - - 470 ns

HITACHI 269

¢cyc|

Fig. 8.1 SYSTEM CLOCK WAVEFORM

SICK
SOCK - - Z \
SIEN (24V)Vy
sopn (04VIVi AL tsps| [tsoi
i
V(24 V] '
ST Y
Vi(0.4V) \ A\
tspp tspp
v a1a
SO 20 X
0.8V AAC

(Note) The SO pin goes to the high-impedence state by latching SOEN with
SOCK.

Fig. 8.2 SERIAL 1/0 WAVEFORM

270 HITACHI

1E

RAW

Fo~Fs

Do '”D|5
(BUS —HSP)

Dy ~Dis
(HSP—BUS)

cyc

bl twr t, twh
Vi /f .\X
Vi 7 N
tes!
tcs —= ton
24V Vi :
k V[L(04V)
tAC — tca
~ Vip(24V)
N Vip(04V)
tpsw
— - tDHW
(24V)Viy ™
(04V) V1L _7§
'DDR —=| [=— tpHR
—— 2.0V -
r::OBV 7£

(Note 1) Keep tcg (min. 140ns) with CTR/PC transfer instructions.

The data transfer instruction using the IR/OR takes tgg'of more

than 10 ns.

(Note 2) The data bus output in the byte transfer mode is 16 bit (DO " Dis) -

In this case, the upper half (Dg v Dj5) is not valid.

Dg v D15 should not be directly connected to Vcc/GND.

Fig. 8.3 PARALLEL I/0 TIMING

Therefore,

HITACHI 271

Vi (24V)
I
. ///;7 ViL

" (0.4V)

-V in(24V)
TxAK 44/7

tan

tTR |

TxRQ 08V

Fig. 8.4 DMA TIMING

Vee Vee
Ry =22k0 i Ry =27kQ
‘J_ 182074 ®
R C C=90pF
| R=56kQ
C=90pF :

Applicable terminal (Dg n D15, SO) Applicable terminal (TxRQ)
C : includes probe and jig capacitance

Fig. 8.5 LOAD CIRCUIT (FOR TIMING TEST)

08C e A AR AR A== — e — — —— — — o — — ——
(crock Taput) — LN I 2=

5.25V _ . .
Voo 4.75V - y
r ——
RES L
tRC Reset start tpsT | Reset start
Power—-ON reset tgc = 20ms (min)

Reset during operation tggr = lus (min)

(Note) Clock (16 MHz) should be input during tggr or the power-ON
rest start.

Fig. 8.6 RESET TIMING

272 HITACHI

8.3 PACKAGE OUTLINE

The HSP provides three kinds of packages as follows;

DC-40

140) 21

O\
15.02
(0.591)

;
ny T
wﬂﬁ
(0.100 - 0.010)

! 127 20
(0.050) R 1620
<% .3 (0,600)
ES185
R c?wﬁ
S| |8s
s
w0
254025 048-01 Hg 0205 |
70100 - 0.010) (0019 0.00a) ~3 (001072955
unit : mm Cinch)
size | 11
DP-40
52.8(2.079)
53.30max
o (2.098max) ”
nonooaOoponooooOonnonnonon
2|8
“le
e S
7 20
12
(0.047)
<t 3
L | 12 ; &8
yne

19.12

(0.753)

44102
(0.173 £0.008)

‘Viqqxuuuuiu

18.04+05
(0.710+0.020)

2554015
(0.100+0.006) '

048 01 £ <
EE e v .
©019-0000) 58 0 o unit - mm (inch)
2 B L
~e © size 1171
CP-52
20074012
(0.790+0.005)
L Lnnnnd
8 % |3
g O g H
g s g |s
2 S HalS
g d p = S S|o
LR p s HlH
:l;u q P oz =3|e
3|8 9 b =[@ s &=
dqd p
d P
204 3

unit . mm Cinch)
size 11 179

NOTE) Inch value indicated for your reference.

HITACHI 273

0o N O OB WDN -

APPENDIX

HSP REGISTER MODEL
INSTRUCTION CODE
INSTRUCTION SET
ASSEMBLER SYNTAX

HSP INSTRUCTION SUMMARY
MEMORY MAP

HSP ORDERING SPECIFICATION
TEST PROGRAM

1. HSP REGISTER MODEL

(1) Fixed Point

15 0
ACCA l T T T T T T T T T T I T T T IJ
15 0
ACCB | T 1T T 1 1 1 1. 1 1T T 1°°T ‘J
1 T T T 1 1 1 il
IR I T 1T T T 1 T T
15 0
OR I T 1T T 1T 1. T 1 1 1T T 1T 17 IJ
L T T 1 T OJ
SIR [T T T T T 1T T T T T 1
I’lsl — T 1t 1 1 1 1T 1 T T T 1 ‘3
SOR
15 10
o [T
15 10
w
15 10
o O
15 10
e [T
15 13 :
cCR
7 0
CTR 02 g g A
7 0
STR [e]rsofts] 1o sor]ste] er |

1/0 register, General purpose register, ROM/RAM corresponding bit

15 0
DREG I’ | NN U S DS S N I EE B S N SR R B J
15 0
ROM/RAM I T T T T 1 1 171t 1r 71T 17T 171 J
15 0
GRO’\J3 I T T T T T T T T T T T T T T IJ
15 4
N | T T T T T T T T 11 l
MULT 15 0
OUT[T T T T 1 1 T 1T T T T T 1 T J

HITACHI 277

(2)

Floating point

Mantissa Exponent
151 T T T T T T T T T T T T T T 0 T T T
acca | 1
ACCB 15I T T T T T T T T T T T T T T 0 3 T T 0
I 1 |

ORE LS ————— 4 3 0

R/G IlSI et .:l 3 0

ROMRAMI”,.,.,,.....‘*I I3 ffol
v

GR“llSH...,..‘..“] 13 fOI

MULT INILISl e ——— .7. . |. . '2] L?,I . I()l
ouT

278 HITACHI

INSTRUCTION CODE

2.

1,I' ALU Operation Instruction (Pointer Addressing Mode)

1

6 5 4 3 2

7

21 20 19 18 17 16 1514 131211 10 9 8

4+
o
[J]
£
)
~
_ o
g/y 1eo3urod KvYy $30°T°S | Qa1 ‘vato o
1
Jusweoul Xd3urod KoY | ~ouré1 *oul ION¢Q m
juemweioul I93utod WVY " *ouI¢y *oul 3ION'Q AW
1 [
I
. o8ed WO/KVH/HOY | (s31q) 28ed-x
2 I
5 | &
=} T &)
[} ~
(@] | W
@ °8ed WV4/WOY | (s31q ¢) @%ed-x 2
o | =
o] @]
.,m | ~
< 0/1 Aiowsw JO TOA3UO)H _ 9.X¢T ‘X-X¢0 R
! z
o11an Kiowo | 23TaMET 93TAM JONO =
30 1023u0D | (X)ReAfT ‘ (X)WOIVE0 |
g/V 00V s3991°§ " g00veT ‘VOOViO0
Xd/1d s39971°S | XI¢T €140
! RET “df0
andu
LA X1 “00V¢0
[a¥}
o
apod do

1)

(bit 1 V bit 2

ALU Operation Imstruction (Direct Addressing Mode)

21 20 19 18 17 16 15 14 13 12 11 10

8

9

$$91ppy 190911(

(s119q

9)
$S21ppy I23UTO0g

T
1
1
|
!
|
|
1
|
b
1
|
|
1
1
1
|

—
o}
I
.
=
e}
(&)
) (S3Tq €) ssoappy 98ed
o
—
3
< 0
0
23TaM Kxowsy | 93TAMET “93TaIm IONYQ
L
O TOx
30 TOTIOD T et T € (R)ReDOVEO
]
q/V 00V S$399193S | 00V T “VOOV:O
Xd/71d S3I02T3S | 4T “140
! T ‘ato
andul 0V
_ X1 “00Vi0
Ay
o
apod do

M(Y) is ROM/RAM/GR.

HITACHI 279

II. Immediate Instructions

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

OP Code Immediate Data for ACC A/B (16 bits)

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Immediate data for
OP Code the RC, ROM/RAM
pointer (6 bits)

III. Jump Instruction

21 20 1918 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

Jump Condition
OP Code Jump Address
C|IN)| Z

o Jumps if (jump condition) A (CCR) # 0

0 In case of unconditional jump, jump condition bits are all '0'.

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

Jump Condition
OP Code Jump Address
RCH

o When RC* = 0, jumps if (RC) # 0.
o When RC* = 1, jumps if (RC) # 0. (RC)-1

IV. Register Data Transfer Instructions

0;RA, 1;RB

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
/g\
9]
i
Fu] o~ ~
9 (o)
B 2
u] 3 I
w |0 o
v (@ A

OP Code = Unused (all '0')
8 =8 2
<O|< < 0
O o]

838 y
<< i 3
B EE &
REE
—~ <q|—
U e Q-
nolno

280 HITACHI

V. Register Increment /Decrement Instructions

91 20 19 18 17 16 1514 13121110 9 8 7 6 5 & 3 2 1 0
—
0]
)
(=]
]
O
~
OP Code Unused (all '0") 35
@
)
o
23
S
wno

VI. Return Instructions

21 20 19 18 17 16 1514 13121110 9 8 7 6 5 4 3 2 1 0

OP Code Unused (all '0')

HITACHI1 281

3.

INSTRUCTION SET

. INSTRUCTION CODE 9] ccr
MONIC 21 20/19 18 17 16/15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0|L|CNZ
FADA |P/Y+A/X—>A(FLT)| 0 00 0 0 0 o 1o
FADB |P/Y+B/X~B(FLT){ 0 0|0 0 0 0 1 1w
ADA | P/YHA/XoA 0 00 0 0 1 0 @1
ADB |P/Y+B/X~B 0 0[0 0 O 11 @ |1
FSBA |P/Y-A/X~A(FLT)| 0 0[0 0 1 0 0 : : 1w
FSBE | PY B/XB(FLTY| 0 000 0 1]w|s|o0 1 L. Pointer Addressing Mode 1]
SBA |P/Y-A/X—A 0 0{0 0 1|1 o - ®|1
SBB |P/Y B/X-B 0 0j0 0 1]|~|~f1 1 , |A7Fage |[Y-Page| | o) [w]1
0 s . NoE LT
FLDA |P/Y=a (FLT)| o 1]1 0 of8[%[o o 2 (3 bies)Bbits) 715 [T,

I |FLDB |P/Y-B (FLT)[0 1[1 0 0fz|cfo 1 ! {g Slal+lo
LDA |P/Y-A 0 1|1 0 of: 1 0 o AlAlel s o
LDB |P/Y-B 0 1/1 0 0] 11 . % [ROM/RAM| ROM/ | 3| 5| 2|+ |0
ANDA | P/YAA/X-A 0 0l1 1 0| o1 0 g| Page |RAM/G |S|S <[]0y
ANDB | P/Y~B/X—B 0 of1 1 of 3 |1 1 & P sls| Sy jet d

o 2 age 2l ele
ORA | P/YVA/X—A 001 0 of 51 0 ~ 33 S I
ORB | P/Y“B/X—B 0 0/1 0 0 11 g s € et
j==] g 5]
EORA |P/YPA X—A 0 o0o{1 0 1) 3|1 0 = 2| & dlag s
EORB |P/Y®B,/X—B 0 0f1 0 1| < {1 1 \ 7 R IR
FABSA | |A[—A (FLT){0 11 0 1 00 0 0 (Note) RC post-decrement |10 0
FABSB | |B|—B (FLT){0 1|1 0 1 0{0 0 1 it 1V bi 1{00
ABSA |[A[—A 0 11101 0ofo 1 of, (when bit 1Vvbit ||, o
ABSB | |B—B 0 1|10 1 0j0 1 1|& 2=1) a0l
S~
FRPTA |Repeat mext) (FLT)|1 1|1 1 0 0|0 0 0 r Y X]
FRPTB |[instruction | (FLT)/1 1|1 1 0 0[0 0 1 i . + | o0®
RPTA | (RO+L times I 11 1 0 00 1 0y%| |II.Direct Addressing Mode|+ (@ @@
RPTB 1 1|1 1.0 0(0 1 1| i ooe®
Sl Page Pointer
FNEGA | -A—A (FLT)|0 1/0 0 0 0|1 0 o orolah) : 1] s s
FNEGB | -B—B (FLT)[0 1]/0 0 0 0|1 0 1 (3bits) (6 bits) Pt
NEGA | A—A 0 1100 0 0f1 1 of® gl
NAGB | -B—B 0 1{0 0 0 0|1 1 1|§ we| il
9] ROM/RAM Address M(Y)
INCA |A+1-A 0 1{0 0 1 00 1 ofE TR
INCB |B+1-B 0 1[0 0 1 00 1 T
—~
DECA |A-1-A 0o 0/1 11 00 1 ol B [
DECB |B-1-B [0 ol1 11 0/0 1 1|= v tle il
SRA = ¢ to 1010 0]o 1 of | P P
sep (ML TT-000 1o 1 6 0(0 1 1|glE RS

Iy e
SLA o= 8 0 1]0 1 1 0|0 1 of=]— + 1t
st |G T g 10 11 ofo0 1 1 =l . I

en| QU
FLTA [A(FIX)=A(FLT)® [0 1|1 1 1 0|1 0 0f~f|o5 clot
FLTB (B(FIX)-B(FLT)® |0 1|1 1 1 0|1 0 1| =~ o tlot i
—~
FIXA |A(FLT)-ACFIX)@ |0 0[0 1 0 0|1 0 of>|% #1013
FIXB |B(FLD-B(FIX)® |0 00 1 0 0|1 0 1[|X|o ¥103% 1
Q
FCLRA |00008—A 1 1{1 1 0 1[0 o of<|= 4
FCLRB [00008-B Lrfr 1o 1j0 0 1]l +
CLRA |0000+—A 1 1/1 1 0 1/0 1 0|9 .
CLRB | 0000+—B Lijr 1o 1o 1 1f 2" i
FNOPA [(A11 (FLT)|1 1|11 0 0|1 0 ol X :
FNOPB || no (FLD|1 1|1 1 0 0|1 0 1| & +
NOPA |} opera- L1110 o001 1 of=_ 4
NOPB [l tion L1t 1 0o0j1 1 1],73 ¥
~
FSGYA |(A/B-A/B YFLT)[0 1|1 1 0 0|1 0 0| 5o 1711
FSGYB ||signA/B-signY[(FLT)| 0 1|1 1 0 0|1 0 1| g & 1|ed i
SGYA A/BA/B 0 1/l 1 0 0|1 1 0188 w7t
SGYB ||signABsign 0 1|1 1 0 0|1 1 1|= wlaot t
LIA Inmediate data~+A 1 0/0 0 0 O i @11
LIB |Immediate data’s |1 00 0 0 1 Data (16 bits) s l@t

i | LIRA |Immediate datarh |1 0|0 0 1 0 0 0/0 0 0 0]0 0 0 0|+ @ee®
LIRB |Immediate data>RB |1 0 [0 0 1 1 . 0 0[0 0 0 0[0 0 00|+ 0®®
LIRO |Immediate data»RO 1 0lo 1 o o|Data (6 bits)|g olo 0 0 olo o o 0| +|ee®
LIRC |Immediate data+RC 1 0(0 1 0 1 0 0/0 0 0 0{0 0 0 0|+ |®
JCS [Jump if c=1 1 0/1 0 0 0[1 0 0 00 0 o0 K
JNS | Jump if Nel 1 0/1 0 0 0[0 1 0 0|0 0 0 +|®
JZS | Jump if z=1 1 010 0 0{0 0 1 0/0 0 0 Jump address *

W| JSR |Jump to subroutine (1 0|1 0 1 00 0 0 0|0 0 0 . *

JNZ | Jump if RCx0 1 01 0 1 1[0 0 0 0{0 0 0 (9 bits) *
JNZM | Jump if RC¥O,RC-1*RG{ 1 01 0 1 1|1 0 0 0|0 0 0 *
JMP | Jump alvavs 1 0/1 0 0 0/0 0 0 0[0 0 0 ¥

282 HITACHI

OPERAND OPERATION INSTRUCTION CODE ¢
21 20[19 18 17 16[15 14 13 12|11 10 9 8|7 6 5 4|3 2 1 0 13
A,STR |A—»STR 1 1/o o o olo o o olo 0 0 0|0 0 0 0|0 0 0O 0%
B,STR |B—STR 1 1/6 0 0 0/0 0 0 0{0 0 0 0{0 0 0 0|0 0 0 0 x*
A,CTR |A-CTR 1 1/0 0 0 0/]0 1 0 0{0 0 0 0[O0 0O 0 00 0 0 0%
B,CTR |B~CTR 1 1/00 0 0f0 1 0 1/0 0 0 0{0 0 0 0/0 0 0 0}x*
A,RC |A-RC 1 1/0 0 0 0|1 0 0 0/]0 0 0 0[O0 O O 00 O O 0)%
B,RC_|B—RC i 1/0 0 0 0/1 0 0 1/0 0 0 0{0 0 0 0j0 0 0 0]%
A,OR |A-OR 1 110 0 0o t]o 0o 0 0{0 0 0 0|0 0 0 00 0 0 0%
B, OR B—~OR 1 1/0 0 0 1/0 0 o0 1[0 0 0 0[{0 0 0 0J]0 0 0 0 x*
A,RO |A-RO 1 1/0 0 0 1]0 1 0 0{0 0 0 0{0 0 0 0}0 0 0 0%
B,RO |B—RO 1 1/00 0 1]/0 1 0 1/{0 0 0 0[O0 0 0 0j0 0 0 0]
A,RA |A-RA 1 1/0 0 0 1|1 0 0 0{0 0 0 0]0 0 0 0j0 0 0 0%
v B ,RA |B—RA i 1/0 0 0 1/1 0 0 1[0 0 0 0/0 0 0 0|0 0 0 0 %
A,RB |A—RB 1 1/0 0 0 1]1 0 0 0{0 O 0 0/0 0 O 040 0 0 1%
B,RB B—~RB 1 1/0 0 06 1|1t 0 0 1/0 0 0 0/0 0 0 0]0 0 0 1 %
A,CCR |A—>CCR 1 1/0 0 0 1/1 1 0 0f0 0 0 0l0 0 O 0|0 0 O 0%
B,CCR |B—~CCR 1 1/0 0 0 1|1 1 0 1/0 0 0 0/{0 0 0 0|0 0 0 0]x%
A, SOR [A—SOR 1 1/0 0 1 0/0 0 0 0[O0 O O 0|0 O O 0/0 0 0 Ofx
B, SOR |B~»SOR 1 1/0 0 1 0/06 0 0 1(0 0 0 00 O 0O 0(0 0O 0 0/x%
~ | STR,A |STR-A i 1/0 1 0 0/0 0 0 0/{0 0 0 0l0 0 0 00 0 0 O0/x|@%?
o |STR,B |STR—B 1 1/6 1 0 0/0 0 1 0/0 0 0 00 0 0 0|0 0 0 O|* @717
= ICTR,A [CTR-A 1 1]0 1 0 0]0 1 0 0/0 0 0 0/0 0 0 0[0 0 0 O0[x|@31?
« |CTR,B |CTR-B 1 1/01 0 0/0 1 1 0[0 0 0 0[O0 0 0 0[O0 0 0 0|* @731
S |RC,A RC—A 1 1/0 1 0 0|1 0 0 0/0 0 0 0l0 0 0 0[0 0 0 0|* @1
z |RC,B RC-»B 1 10 1 0 01 0 1 0[0 0 0 0({0 0 0 0/0 0 0 O0|* @13
5 [IR,A IR—A 1 1]/0 1 0 0l1 1 0000 0o0/0 020 0/0 00 O0fx @i
& |IR,B IR—-B 1 1/01 0 0|1 1 1 0[0 0 0 0[0 0 0 0[0 0 0 O0|* @t}
~{RO,A |RO~A 1 1/01 0 1/0 1 0 0[0 0 000 0 0 O0[{0 0 0 O0fx @0
RO, B RO~B 1t 1/0 1 0 1{06 1 1 0(0 0 0 0[{0 0 0 0[{0 0 0 O0/*x @V 0
RA,A RA—A 1 1]0 1 0 1]1 0 0 0/0 0 0 0/0 0 0 0[0 0 0 0|* @10
RA, B RA-B 1 1/0 1 0 1|1 0 1 0/0 06 0 0{0 0 0 0/0 0 0 O0|x ®&%!0
RB, A RB-—>A 1 1/01 0 1/]1 0 0 0[0 0 0 0[0 0 0 0[O0 0 0 1|*x|®t0
RB,B RB—B 1 1/6 1 0 1/1 0 1 0/0 0 0 0/0 0 0 0/0 0 0 1|*x @70
CCR,A [CCR-A 1 1/0 1 0 1/1 1 0 00 0 0 0[0 0 0 0]0 0 0 0* @10
CCR,B |CCR~B 1 1/61 0 1/1 1 1 0/0 0 0 0[0 0 0 0/0 0 0 O0|* @10
SIR,A |SIR~A 7 110 1 1 0]0 1 0 0/0 0 0 0l0 0 0 0f0 0 0 O|* @Y
SIR,B |SIR-B 1 1/0 1 1 0]0 1 1 0/0 0 0 0/0 0 0 0|0 0 0 0/* @11
A, B A—B(FIX only) 1 1/0 1t 1 ol1 0 1 0/0 0 0 0/0 0 0 00 0 O O|* @7
B,A B-A(FIX only) 1 10 1 1 0f1 0 0 1/0 0 0 0/0 0 0 0/0 0 O 0% @Y7
MNENON OPERATION INSTRUCTION CODE 9
EHONIC) 21 2019 18 17 16|15 14 13 12411 10 9 8|7 6 5 4|3 2 1 0 £
INCRA [RA+1-RA 1 1/1 0 0 0[/0 0 0o 0[O0 0 0 0[O0 0 O 00 0 0 0%
INCRB |RB:1-»RB 1 1/1 0 0 0/{0 0 0 0/0 0 0 0[0 0 0 0,0 0 0 1]%*
INCRO |RO+1-RO i 1]/1 060 0 0}j0 1 0 0/0 0 0 0[O0 0 0O 0j0 0 O 0 ;%
V [DECRA |RA-1-RA 1 1/1 0 1 0/0 0 0 0[O0 0 0 0|0 0 0 0[O0 0 0 O}x*
DECRB |RB-1 »RB i 1/1 01 0/0 0 0 0{0 0 0 0[0 0 0 010 0 0 1]%
DECRO |RO 1-RO 1 1/1 0 1 0/0 1 0 0/{0 0 0 0{0 0 0 0)0 0 0 0}%*
DECRC |RC-1-RC 1 1{1 0 1 0(1 0 0 0/0 0 0 0/0 0 O OO O O O/ %
v RTI Return from interrupt 1 1/1 1 1 0/0o 0 0 0[O0 O O 0(0 O O O(0 O 0O Of%*
RTN Retuen from subroutine |1 11 1 1 0{0 1 0 0/0 0 0 0]/0 0 0 0/0 0 0 O0]x*
: Accumulator A IR: Input register 1 Generated by the mantissa parts of two inputs
: Accumulator B OR: Output register (after adjusting digit of mantissa:
: X-Bus memory output SIR: Serial input register 2 Undefined
: Y-Bus memory output SOR: Serial output register 3 1 when A/B=$8000 before execution and OVFP=0;
: Multiplier output CCR: Condition code register otherwise 0. . .
: General register STR: Status register 4 1 when A/B=$0000 before execution; otherm'.se 0.
: Delay register CTR: Control register 5 1 when A/B=$FFFF before execution; otherwise 0.
: Program counter M(Y): Y-Bus output memory address 6 1 when A/BX0000 before execution; otherwise 0.
: Repeat counter A/B (15V10)++RC/RO/RA/RB(5V0) 7 1 when Sign A/BxSign Y and A/B=$0000:
: ROM pointer A/B (15V13)++CCR(15V13) otherwise 0.
: RAM pointer A A/B (7 ~ 0)+>STR/CTR(7V0) 8 OVFP(CTR(1)) = 0: Not overflow protect
: RAM pointer B = 1: Overflow protect

9 Scaling with exponent of Y-Bus output.

i i - t: Mantissa
151413121110 9 8 7 6 5 4 3 2 1 0 10 Scaling with exponent of Y-Bus outpu nti

cex (C‘Nl ZJ/AV'/WWL/I/LWM 11 ;-:pesr?gso.on the 13v15 bits of A/B.
CTR W’[W‘/]/I/Mﬁm%ﬂgl j jov 12 iiiia;?:dd(e}z(ilmt;innée.s in the pointer address mode
st PV T T T 7] cotumn
1 5 H i hange
I I O I V74 A P a a aaa B R e

OVFP Column
* Not affected by OVFP (CTR, bit 1)
1 OVFP should be set to 1 beforehand.
Once set, OVFP does not change unless TFR
instruction (A/B»CIR) is executed.

HITACHI 283

4. ASSEMBLER SYNTAX

I. ALU Operation Instructions (Pointer Addressing Mode)
SYNTAX]
[<label>] A <mnemonic> A <operand @> [A<comment>]
EXAMPLE]
P +
FADA A @%’% Xv(2,3), RA

<Operand @ > Consists

[1:
of @m@

Can be omitted A: Space

@ ALU input select

@ Momory write
control

(3 ROM/RAM/GR page
select

(4 ROM/RAM pointer
select and

increment
PA...Product & ACC EE...Not write X,Y(n,m) RA,RO
YA...Y-Bus & ACC A ...ACCoRAM/GR ...X-Bus:page n data| ...RA & RO select
— - Y-Bus:page m data RB.RO
- i ot Rkl
PX...Product & X-Bus | D ...DREG>RAM/GR X,6(n,2) T.RB & RO select
YX...Y-Bus & X-Bus Destination ad- ...X-Bus:page n data A .
- i utoincrement
dress is deter- Y-Bus:GR(L) data .
. expression RA+
mined by n=0n7 RB+
and m=0"%7 RO+
2 =0"n3
RO can be omitted.
I. ALU Operation Instructions (Direct Addressing Mode)
SYNTAX
[<label>] A <mnemonic> A <operand >[A<comment>]
EXAMPLE

FADA A

PA, EE, 3,18

<Operand > Consist

s of @’\:@

@ALU input select @Memory write control @Direct address

PA...Product & ACC EE . Not write n,m ... Specify the read/
ite add

YA...Y-Bus & ACC A ... ACC » RAM vrite address

i - directly.

PX...Product & X-Bus D . D > RAM

— - n = page 0 v 7

YX...Y-Bus & X-Bus m = address 0 Vv 49 (RAM)
0 v 31 (ROM)

284 HITACHI

I' ALU Operation Instructions (Pointer Addressing Mode)

SYNTAXI

[<label>] A <mnemonic> A <operand(:)> [A <comment>]

EXAMPLE

FABSA A EE, XG(1,3), RA

<Ope

rand©> consists of @N@, which is same expression as <operand@>.

I'. ALU Operation Instructions (Direct Addressing Mode)
SYNTAX
[<label>]A <mnemonic> A <operand<:)> [A<comment>]
EXAMPLE
FABSA A, 0,12
<0perand®> consists of @’\/©, which is same expression as <operand>.
II. Immediate Instructions

SYNTAX

[<label>] A <mnemonic> A <constant> A [<comment>]

LIA A $2FC7

<cons

I1T.

tant> LIA, LIB: $0000 v S$FFFF, others : $00 v $3F

Jump Instructions

SYNTAX |

[<label>] A<mnemonic> A <constant> [A<comment>]

EXAMPLE

Jcs A $118

L

<constant> Jump address: $000 v $1E6

HITACHI 285

IV. Register Data Transfer Instructions

SYNTAX

[<label>] A <mnemonic> A <register 1>, <register 2> [A<comment>]

EXAMPLE

TFR A A, STR

<Register 1> : Source register: A, B, STR, CTR, RC, IR, RO, RA, RB, CCR, SIR

<Register 2> Destination
register: A, B, STR, CTR, RC, OR, RO, RA, RB, CCR, SOR

V. Register Increment/Decrement Instructions

SYNTAX

[<label>] A <mnemonic> [A <comment>]

EXAMPLE

INCRA

VI. Return Instructions

SYNTAX

[<label>] A <mnemonic> [A<comment>]

EXAMPLE

RTN

286 HITACHI

5. HSP INSTRUCTION SUMMARY

* In alphabetical order

Mnemonic Page Mnemonic Page Eggtruction Page
ABSA 134 JCS 205 A, B 228
ABSB 136 JMP 208 A, CCR 217
ADA 98 JNS 205 A, CTR 211
ADB 100 JNZ 207 A, OR 213
ANDA 118 JNZM 207 A, RA 215
ANDB 120 JSR 206 A, RB 216
CLRA 182 JZS 206 A, RC 212
CLRB 184 LDA 114 A, RO 214
DECA 158 LDB 116 A, SOR 218
DECB 160 LIA 202 A, STR 210
DECRA 230 LIB 202 B, A 228
DECRB 231 LIRA 203 B, CCR 217
DECRC 232 LIRB 203 B, CIR 211
DECRO 231 LIRC 204 B, OR 213
EORA 126 LIRO 204 B, RA 215
EORB 128 NEGA 150 B, RB 216
FABSA 130 NEGB 152 B, RC 212
FABSB 132 NOPA 190 B, RO 214
FADA 94 NOPB 192 B, SOR 218
FADB 96 ORA 122 B, STR 210
FCLRA 178 ORB 124 CCR, A 226
FCLRB 180 RPTA 142 CCR, B 226
FIXA 174 RPTB 144 CTR, A 220
FIXB 176 RTI 232 CTR, B 220
FLDA 110 RTN 233 IR, A 222
FLDB 112 SBA 106 IR, B 222
FLTA) 170 SBB 108 RA, A 224
FLTB 172 SGYA 198 RA, B 224
FNEGA 146 SGYB 200 RB, A 225
FNEGB 148 SLA 166 RB, B 225
FNOPA 186 SLB 168 RC, A 221
FNOPB 188 SRA 162 RC, B 221
FRPTA 138 SRB 164 RO, A 223
FRPTB 140 TFR 209 RO, B 223
FSBA 102 SIR, A 227
FSBB 104 SIR, B 227
FSGYA 194 STR, A 219
FSGYB 196 STR, B 219
INCA 154
INCB 156
INCRA 229
INCRB 229
INCRO 230

HITACHI 287

6. MEMORY MAP

Pointer
address

RAM page address

HEX |DEC 0

1 2

ROM page address

00,00

5 6

01]01

0202

03/03

0404

05105

06 |06

07107

08 08

09109

oAjlo0

OB |11

0C |12

0D |13

0OE [14

OF |15

10|16

11 /17

12118

13]19

14120

15121

16 |22

17123

18 |24

1925

1A 26

1B (27

1C |28

1D |29

1E |30

1F |31

20 |32

21133

general registers

22 |34

GRO

GR1 GR2

GR3

23|35

24136

25137

26 |38

27 139

28 |40

29 |41

2A (42

2B |43

2C |44

2D |45

2E |46

2F |47

30 (48

31 (49

Please use this table for HSP program development.

288 HITACHI

7. HSP ORDERING SPECIFICATION

(1) General information Fill out or check the following items.

Family Name HD61810

Application *1

Functions *2

ROM Code

Package Outline or Name |[140 pin ceramic (DC-40) [J40 pin plastic (DP-40)
[152 pin PLCC (CP-52)

Special Specification

*] Give the appliance using the HSP.
(ex. casette decks, VIRs, air conditiomers)

*2 Give the function of the HSP in the above appliance.
(ex. automatic digital tuning, temperature control)
(2) Environmental check list

The following check list will be used for our reliability design, but
it will not be used to determine the certified characteristics.
Describe the environmental conditions for usual use.

Operating Ambient Temperature | Average —°C

Range —°C - . °C
Operating Ambient Humidity Average — Z

Range - Z - %
Power—on-time Average ____ hours/day
Maximum Applied Voltage Power v

Supply -

1/0 pin ____V

If there is any request on the HSP,
please describe it.

(3) Check list of ROM code

ROM Codes (2 sets) [JAttached [J Supplied
[1To be supplied (Date: / /)
EPROM Type Number |C D
Date
The following is for Hitachi's
reference. Please leave it blank. Company
Type Number J Division
Signature

HITACHI 289

EPROM DATA FORMAT

INSTRUCTION ROM

EPROM ADDRESS
HSP ADDRESS DUMMY MSB <-———»1,SB
0 003 002 001 000
1 007 006 005 004
2 008 00A 009 008
1FF 7FF 7FE 7FD 7FC

:Instruction Code Organization
I 21 1615 87 0

[Dummy | 00} [B

22-bit effective data

DATA ROM
HSP ADDRESS EPROM ADDRESS
PAGE | POINTER DUMMY MSB <——» LSB
4 0 803 802 801 800
1 807 806 805 804
1F 87F 87E 87D 87C
5 0 AO3 A02 A01 AOO
1 AO7 AO6 AO5 AO4
1F ATF A7E A7D A7C
6 0 co3 c02 co1 Ccoo
1 co7 Cco6 CO05 C04
1F C7F C7E C7E c7cC
7 0 EO3 EO02 EO1 EOO
1 EO7 EO06 EO5 EO4
1F E7F E7E E7D E7C
Dummy data are all '$FF'.

290 HITACHI

8.

TEST PROGRAM

Locations $1E7

following test

01E7 20 00
01EB Z0 40
01E7 22 00
OlEA 25 8B
01ER 34 EO
01EC EC ED
01ED 3C ED
O1EE 01 C4
01EF 00 24
01F0 18 CD
01F1 31 00
01FZ 18 ED
01F3 00 A0
01F4 =1 10
01FS 12 CE
0iFs 17 CE
01F7 ZB 01
01F8 24 00
01F? 25 84
01FA 18 CD
01FB 18 CD
OIFC 18 DO
O1FD 18 O
QIFE ZB 01

through 1FE of the instruction ROM are reserved for the

program.

80
Q0
00
Q0
0o

&8
BO
FA
FaA

LIA
TFR
LIRE
LIRC
TFR
NOFE
MNOFRB
ADA
FADB
LDOA
TFR
LDOEB
FADE
TFR
LOA
LDA
JNZ
LIRO
LIRC
1LDA
LOA
LDA
LOA
JNZ
END

FROGRAM

%80
A.CTR
0
50
IR-B
A XY (7.0 FE
A, XY (7.2):RB
Yiul, EE. XY (0, 2) - FE
PA. EE, XY (0, 2) - RB
YA, A XY (7. 1) RR
A. OF
YA: A:- X‘!’ (7- 3) b RB+
YA EE: 0, %13
B. OF
Yxs A, MG (1, 0) . RA
Yl Ay XG (3 1) RA
$1ER
Q
Z3
YA: A, XY (4. 4) . FA
YA: A XY (5 5) - FA
YA A XY (5: 6) - RA
aY (7, 7). RA RO+

:4-1****:{\'****:{:**:&*****$**:{‘-*=¥*****$**
TEST
FIRTPHUR VR IR TR A s o o oo o koK ok kR b R kR

*

HITACHI 291

) HITACHI ELECTRONIC COMPONENTS EUROPE GMBH
é?é%(ﬁli;EOOSBI,S&l) @ H I l AC H I Hans-Pinsel-StraBe 10 A - 8013 Haar b. Miinchen

Printed in W, Germany Tel. 089/46 14-0 - Telex 5 22 593 hitc d - Telefax 089/46 31 51

	04941259.tif
	04941260.tif
	04941261.tif
	04941262.tif
	04941263.tif
	04941264.tif
	04941265.tif
	04941266.tif
	04941267.tif
	04941268.tif
	04941269.tif
	04941270.tif
	04941271.tif
	04941272.tif
	04941273.tif
	04941274.tif
	04941275.tif
	04941276.tif
	04941277.tif
	04941278.tif
	04941279.tif
	04941280.tif
	04941281.tif
	04941282.tif
	04941283.tif
	04941284.tif
	04941285.tif
	04941286.tif
	04941287.tif
	04941288.tif
	04941289.tif
	04941290.tif
	04941291.tif
	04941292.tif
	04941293.tif
	04941294.tif
	04941295.tif
	04941296.tif
	04941297.tif
	04941298.tif
	04941299.tif
	04941300.tif
	04941301.tif
	04941302.tif
	04941303.tif
	04941304.tif
	04941305.tif
	04941306.tif
	04941307.tif
	04941308.tif
	04941309.tif
	04941310.tif
	04941311.tif
	04941312.tif
	04941313.tif
	04941314.tif
	04941315.tif
	04941316.tif
	04941317.tif
	04941318.tif
	04941319.tif
	04941320.tif
	04941321.tif
	04941322.tif
	04941323.tif
	04941324.tif
	04941325.tif
	04941326.tif
	04941327.tif
	04941328.tif
	04941329.tif
	04941330.tif
	04941331.tif
	04941332.tif
	04941333.tif
	04941334.tif
	04941335.tif
	04941336.tif
	04941337.tif
	04941338.tif
	04941339.tif
	04941340.tif
	04941341.tif
	04941342.tif
	04941343.tif
	04941344.tif
	04941345.tif
	04941346.tif
	04941347.tif
	04941348.tif
	04941349.tif
	04941350.tif
	04941351.tif
	04941352.tif
	04941353.tif
	04941354.tif
	04941355.tif
	04941356.tif
	04941357.tif
	04941358.tif
	04941359.tif
	04941360.tif
	04941361.tif
	04941362.tif
	04941363.tif
	04941364.tif
	04941365.tif
	04941366.tif
	04941367.tif
	04941368.tif
	04941369.tif
	04941370.tif
	04941371.tif
	04941372.tif
	04941373.tif
	04941374.tif
	04941375.tif
	04941376.tif
	04941377.tif
	04941378.tif
	04941379.tif
	04941380.tif
	04941381.tif
	04941382.tif
	04941383.tif
	04941384.tif
	04941385.tif
	04941386.tif
	04941387.tif
	04941388.tif
	04941389.tif
	04941390.tif
	04941391.tif
	04941392.tif
	04941393.tif
	04941394.tif
	04941395.tif
	04941396.tif
	04941397.tif
	04941398.tif
	04941399.tif
	04941400.tif
	04941401.tif
	04941402.tif
	04941403.tif
	04941404.tif
	04941405.tif
	04941406.tif
	04941407.tif
	04941408.tif
	04941409.tif
	04941410.tif
	04941411.tif
	04941412.tif
	04941413.tif
	04941414.tif
	04941415.tif
	04941416.tif
	04941417.tif
	04941418.tif
	04941419.tif
	04941420.tif
	04941421.tif
	04941422.tif
	04941423.tif
	04941424.tif
	04941425.tif
	04941426.tif
	04941427.tif
	04941428.tif
	04941429.tif
	04941430.tif
	04941431.tif
	04941432.tif
	04941433.tif
	04941434.tif
	04941435.tif
	04941436.tif
	04941437.tif
	04941438.tif
	04941439.tif
	04941440.tif
	04941441.tif
	04941442.tif
	04941443.tif
	04941444.tif
	04941445.tif
	04941446.tif
	04941447.tif
	04941448.tif
	04941449.tif
	04941450.tif
	04941451.tif
	04941452.tif
	04941453.tif
	04941454.tif
	04941455.tif
	04941456.tif
	04941457.tif
	04941458.tif
	04941459.tif
	04941460.tif
	04941461.tif
	04941462.tif
	04941463.tif
	04941464.tif
	04941465.tif
	04941466.tif
	04941467.tif
	04941468.tif
	04941469.tif
	04941470.tif
	04941471.tif
	04941472.tif
	04941473.tif
	04941474.tif
	04941475.tif
	04941476.tif
	04941477.tif
	04941478.tif
	04941479.tif
	04941480.tif
	04941481.tif
	04941482.tif
	04941483.tif
	04941484.tif
	04941485.tif
	04941486.tif
	04941487.tif
	04941488.tif
	04941489.tif
	04941490.tif
	04941491.tif
	04941492.tif
	04941493.tif
	04941494.tif
	04941495.tif
	04941496.tif
	04941497.tif
	04941498.tif
	04941499.tif
	04941500.tif
	04941501.tif
	04941502.tif
	04941503.tif
	04941504.tif
	04941505.tif
	04941506.tif
	04941507.tif
	04941508.tif
	04941509.tif
	04941510.tif
	04941511.tif
	04941512.tif
	04941513.tif
	04941514.tif
	04941515.tif
	04941516.tif
	04941517.tif
	04941518.tif
	04941519.tif
	04941520.tif
	04941521.tif
	04941522.tif
	04941523.tif
	04941524.tif
	04941525.tif
	04941526.tif
	04941527.tif
	04941528.tif
	04941529.tif
	04941530.tif
	04941531.tif
	04941532.tif
	04941533.tif
	04941534.tif
	04941535.tif
	04941536.tif
	04941537.tif
	04941538.tif
	04941539.tif
	04941540.tif
	04941541.tif
	04941542.tif
	04941543.tif
	04941544.tif
	04941545.tif
	04941546.tif
	04941547.tif
	04941548.tif
	04941549.tif
	04941550.tif
	04941551.tif
	04941552.tif
	04941553.tif
	04941554.tif
	04941555.tif
	04941556.tif
	04941557.tif
	04941558.tif
	04941559.tif
	04941560.tif

